summaryrefslogtreecommitdiff
path: root/src/object.cpp
blob: ddbd10c758ffc192a91502be784aaebbf04c151f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
 *  The Mana World Server
 *  Copyright 2004 The Mana World Development Team
 *
 *  This file is part of The Mana World.
 *
 *  The Mana World  is free software; you can redistribute  it and/or modify it
 *  under the terms of the GNU General  Public License as published by the Free
 *  Software Foundation; either version 2 of the License, or any later version.
 *
 *  The Mana  World is  distributed in  the hope  that it  will be  useful, but
 *  WITHOUT ANY WARRANTY; without even  the implied warranty of MERCHANTABILITY
 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 *  more details.
 *
 *  You should  have received a  copy of the  GNU General Public  License along
 *  with The Mana  World; if not, write to the  Free Software Foundation, Inc.,
 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 *  $Id$
 */

#include <cassert>
#include <cmath>

#include "object.h"

#include "map.h"
#include "mapmanager.h"

void Object::setID(int id)
{
    assert(mID < 0);
    mID = id;
}

void MovingObject::move()
{
    unsigned mSrcX = getX(), mSrcY = getY();
    if (mSrcX == mDstX && mSrcY == mDstY) {
        mNewX = mDstX;
        mNewY = mDstY;
        return;
    }

    Map *map = MapManager::instance().getMap(getMapId());
    int tileW = map->getTileWidth(), tileH = map->getTileHeight();
    int tileD = (int) std::sqrt((double)(tileW * tileW + tileH * tileH));
    int tileSX = mSrcX / tileW, fracSX = mSrcX % tileW - tileW / 2;
    int tileSY = mSrcY / tileH, fracSY = mSrcY % tileH - tileH / 2;
    int tileDX = mDstX / tileW, fracDX = mDstX % tileW - tileW / 2;
    int tileDY = mDstY / tileH, fracDY = mDstY % tileH - tileH / 2;

    std::list<PATH_NODE> path;
    if (tileSX != tileDX || tileSY != tileDY) {
        path = map->findPath(tileSX, tileSY, tileDX, tileDY);
        if (path.empty()) {
            mNewX = mDstX = mSrcX;
            mNewY = mDstY = mSrcY;
            return;
        }
        path.pop_back();
    }

    int tileCX = tileSX, tileCY = tileSY, fracCX = fracSX, fracCY = fracSY;
    int left = mSpeed;
    int vecX = 0, vecY = 0, cost = 0;

    for (std::list<PATH_NODE>::const_iterator it = path.begin(),
         it_end = path.end(); it != it_end; ++it)
    {
        int tileNX = it->x, tileNY = it->y;
        assert((tileNX != tileCX || tileNY != tileCY) &&
               (tileNX != tileDX || tileNY != tileDY));

        if (fracCX != 0 || fracCY != 0) {
            // not at the tile center, move toward the next tile center
            vecX = -fracCX + tileW * (tileNX - tileCX);
            vecY = -fracCY + tileH * (tileNY - tileCY);
            cost = (int) std::sqrt((double)(vecX * vecX + vecY * vecY));
        } else {
            // at a tile center and toward the next tile center
            assert(abs(tileNX - tileCX) <= 1 && abs(tileNY - tileCY) <= 1);
            if (tileNX != tileCX) {
                vecX = tileW * (tileNX - tileCX);
                if (tileNY != tileCY) {
                    vecY = tileH * (tileNY - tileCY);
                    cost = tileD;
                } else {
                    vecY = 0;
                    cost = tileW;
                }
            } else {
                assert(tileNY != tileCY);
                vecX = 0;
                vecY = tileH * (tileNY - tileCY);
                cost = tileH;
            }
        }

        if (cost > left) break;
        // enough movement left to reach the next tile center
        tileCX = tileNX;
        tileCY = tileNY;
        fracCX = 0;
        fracCY = 0;
        vecX = 0;
        vecY = 0;
        left -= cost;
    }

    if ((vecX == 0 && vecY == 0) && (fracCX != fracDX || fracCY != fracDY)) {
        // walk toward the destination
        vecX = fracDX - fracCX + tileW * (tileDX - tileCX);
        vecY = fracDY - fracCY + tileH * (tileDY - tileCY);
        cost = (int) std::sqrt((double)(vecX * vecX + vecY * vecY));
    }

    if (cost <= left) {
        // enough movement left to perform the last step
        mNewX = mDstX;
        mNewY = mDstY;
        return;
    }

    // linear interpolation along the vector
    assert(cost > 0);
    mNewX = tileCX * tileW + tileW / 2 + fracCX + vecX * left / cost;
    mNewY = tileCY * tileH + tileH / 2 + fracCY + vecY * left / cost;
}