/*
* The Mana World
* Copyright 2004 The Mana World Development Team
*
* This file is part of The Mana World.
*
* The Mana World is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* The Mana World is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with The Mana World; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id$
*/
#include "map.h"
#include <algorithm>
#include <queue>
#include "beingmanager.h"
#include "game.h"
#include "graphics.h"
#include "sprite.h"
#include "tileset.h"
#include "resources/resourcemanager.h"
#include "resources/ambientoverlay.h"
#include "resources/image.h"
#include "utils/dtor.h"
#include "utils/tostring.h"
/**
* A location on a tile map. Used for pathfinding, open list.
*/
struct Location
{
/**
* Constructor.
*/
Location(int px, int py, MetaTile *ptile):x(px),y(py),tile(ptile) {};
/**
* Comparison operator.
*/
bool operator< (const Location &loc) const
{
return tile->Fcost > loc.tile->Fcost;
}
int x, y;
MetaTile *tile;
};
Map::Map(int width, int height, int tileWidth, int tileHeight):
mWidth(width), mHeight(height),
mTileWidth(tileWidth), mTileHeight(tileHeight),
mOnClosedList(1), mOnOpenList(2),
mLastScrollX(0.0f), mLastScrollY(0.0f)
{
int size = mWidth * mHeight;
mMetaTiles = new MetaTile[size];
mTiles = new Image*[size * 3];
std::fill_n(mTiles, size * 3, (Image*)0);
}
Map::~Map()
{
// clean up map data
delete[] mMetaTiles;
delete[] mTiles;
// clean up tilesets
for_each(mTilesets.begin(), mTilesets.end(), make_dtor(mTilesets));
mTilesets.clear();
// clean up overlays
for_each(mOverlays.begin(), mOverlays.end(), make_dtor(mOverlays));
}
void
Map::initializeOverlays()
{
ResourceManager *resman = ResourceManager::getInstance();
for (int i = 0;
hasProperty("overlay" + toString(i) + "image");
i++)
{
const std::string name = "overlay" + toString(i);
Image *img = resman->getImage(getProperty(name + "image"));
float speedX = getFloatProperty(name + "scrollX");
float speedY = getFloatProperty(name + "scrollY");
float parallax = getFloatProperty(name + "parallax");
if (img)
{
mOverlays.push_back(
new AmbientOverlay(img, parallax, speedX, speedY));
// The AmbientOverlay takes control over the image.
img->decRef();
}
}
}
void
Map::addTileset(Tileset *tileset)
{
mTilesets.push_back(tileset);
}
bool spriteCompare(const Sprite *a, const Sprite *b)
{
return a->getPixelY() < b->getPixelY();
}
void
Map::draw(Graphics *graphics, int scrollX, int scrollY, int layer)
{
int startX = scrollX / 32;
int startY = scrollY / 32;
int endX = (graphics->getWidth() + scrollX + 31) / 32;
int endY = (graphics->getHeight() + scrollY + 31) / 32;
// If drawing the fringe layer, make sure sprites are sorted
SpriteIterator si;
if (layer == 1)
{
mSprites.sort(spriteCompare);
si = mSprites.begin();
// Increase endY to account for high fringe tiles
// TODO: Improve this hack so that it'll dynamically account for the
// highest tile.
endY += 2;
}
if (startX < 0) startX = 0;
if (startY < 0) startY = 0;
if (endX >= mWidth) endX = mWidth - 1;
if (endY >= mHeight) endY = mHeight - 1;
for (int y = startY; y < endY; y++)
{
// If drawing the fringe layer, make sure all sprites above this row of
// tiles have been drawn
if (layer == 1)
{
while (si != mSprites.end() && (*si)->getPixelY() <= y * 32 - 32)
{
(*si)->draw(graphics, -scrollX, -scrollY);
si++;
}
}
for (int x = startX; x < endX; x++)
{
Image *img = getTile(x, y, layer);
if (img) {
graphics->drawImage(img,
x * 32 - scrollX,
y * 32 - scrollY + 32 - img->getHeight());
}
}
}
// Draw any remaining sprites
if (layer == 1)
{
while (si != mSprites.end())
{
(*si)->draw(graphics, -scrollX, -scrollY);
si++;
}
}
}
void
Map::drawOverlay(Graphics *graphics, float scrollX, float scrollY, int detail)
{
static int lastTick = tick_time;
// Detail 0: no overlays
if (detail <= 0) return;
if (mLastScrollX == 0.0f && mLastScrollY == 0.0f)
{
// First call - initialisation
mLastScrollX = scrollX;
mLastScrollY = scrollY;
}
// Update Overlays
int timePassed = get_elapsed_time(lastTick);
float dx = scrollX - mLastScrollX;
float dy = scrollY - mLastScrollY;
std::list<AmbientOverlay*>::iterator i;
for (i = mOverlays.begin(); i != mOverlays.end(); i++)
{
(*i)->update(timePassed, dx, dy);
}
mLastScrollX = scrollX;
mLastScrollY = scrollY;
lastTick = tick_time;
// Draw overlays
for (i = mOverlays.begin(); i != mOverlays.end(); i++)
{
(*i)->draw(graphics, graphics->getWidth(), graphics->getHeight());
// Detail 1: only one overlay, higher: all overlays
if (detail == 1)
break;
};
}
void
Map::setTileWithGid(int x, int y, int layer, int gid)
{
if (layer == 3)
{
Tileset *set = getTilesetWithGid(gid);
setWalk(x, y, (!set || (gid - set->getFirstGid() == 0)));
}
else if (layer < 3)
{
setTile(x, y, layer, getTileWithGid(gid));
}
}
class ContainsGidFunctor
{
public:
bool operator() (Tileset* set)
{
return (set->getFirstGid() <= gid &&
gid - set->getFirstGid() < (int)set->size());
}
int gid;
} containsGid;
Tileset*
Map::getTilesetWithGid(int gid)
{
containsGid.gid = gid;
TilesetIterator i = find_if(mTilesets.begin(), mTilesets.end(),
containsGid);
return (i == mTilesets.end()) ? NULL : *i;
}
Image*
Map::getTileWithGid(int gid)
{
Tileset *set = getTilesetWithGid(gid);
if (set) {
return set->get(gid - set->getFirstGid());
}
return NULL;
}
void
Map::setWalk(int x, int y, bool walkable)
{
mMetaTiles[x + y * mWidth].walkable = walkable;
}
bool
Map::getWalk(int x, int y)
{
return !tileCollides(x, y) && !occupied(x, y);
}
bool
Map::occupied(int x, int y)
{
Beings &beings = beingManager->getAll();
for (BeingIterator i = beings.begin(); i != beings.end(); i++)
{
// job 45 is a portal, they don't collide
if ((*i)->mX / 32 == x && (*i)->mY / 32 == y && (*i)->mJob != 45)
{
return true;
}
}
return false;
}
bool
Map::tileCollides(int x, int y)
{
return !(contains(x, y) && mMetaTiles[x + y * mWidth].walkable);
}
bool
Map::contains(int x, int y)
{
return x >= 0 && y >= 0 && x < mWidth && y < mHeight;
}
void
Map::setTile(int x, int y, int layer, Image *img)
{
mTiles[x + y * mWidth + layer * (mWidth * mHeight)] = img;
}
Image*
Map::getTile(int x, int y, int layer)
{
return mTiles[x + y * mWidth + layer * (mWidth * mHeight)];
}
MetaTile*
Map::getMetaTile(int x, int y)
{
return &mMetaTiles[x + y * mWidth];
}
SpriteIterator
Map::addSprite(Sprite *sprite)
{
mSprites.push_front(sprite);
return mSprites.begin();
}
void
Map::removeSprite(SpriteIterator iterator)
{
mSprites.erase(iterator);
}
static int const basicCost = 100;
Path
Map::findPath(int startX, int startY, int destX, int destY)
{
// Path to be built up (empty by default)
Path path;
// Declare open list, a list with open tiles sorted on F cost
std::priority_queue<Location> openList;
// Return empty path when destination collides
if (tileCollides(destX, destY))
return path;
// Reset starting tile's G cost to 0
MetaTile *startTile = getMetaTile(startX, startY);
startTile->Gcost = 0;
// Add the start point to the open list
openList.push(Location(startX, startY, startTile));
bool foundPath = false;
// Keep trying new open tiles until no more tiles to try or target found
while (!openList.empty() && !foundPath)
{
// Take the location with the lowest F cost from the open list.
Location curr = openList.top();
openList.pop();
// If the tile is already on the closed list, this means it has already
// been processed with a shorter path to the start point (lower G cost)
if (curr.tile->whichList == mOnClosedList)
{
continue;
}
// Put the current tile on the closed list
curr.tile->whichList = mOnClosedList;
// Check the adjacent tiles
for (int dy = -1; dy <= 1; dy++)
{
for (int dx = -1; dx <= 1; dx++)
{
// Calculate location of tile to check
int x = curr.x + dx;
int y = curr.y + dy;
// Skip if if we're checking the same tile we're leaving from,
// or if the new location falls outside of the map boundaries
if ((dx == 0 && dy == 0) || !contains(x, y))
{
continue;
}
MetaTile *newTile = getMetaTile(x, y);
// Skip if the tile is on the closed list or collides
if (newTile->whichList == mOnClosedList || tileCollides(x, y))
{
continue;
}
// When taking a diagonal step, verify that we can skip the
// corner. We allow skipping past beings but not past non-
// walkable tiles.
if (dx != 0 && dy != 0)
{
MetaTile *t1 = getMetaTile(curr.x, curr.y + dy);
MetaTile *t2 = getMetaTile(curr.x + dx, curr.y);
if (!(t1->walkable && t2->walkable))
{
continue;
}
}
// Calculate G cost for this route, ~sqrt(2) for moving diagonal
int Gcost = curr.tile->Gcost +
(dx == 0 || dy == 0 ? basicCost : basicCost * 362 / 256);
/* Demote an arbitrary direction to speed pathfinding by
adding a defect (TODO: change depending on the desired
visual effect, e.g. a cross-product defect toward
destination).
Important: as long as the total defect along any path is
less than the basicCost, the pathfinder will still find one
of the shortest paths! */
if (dx == 0 || dy == 0)
{
// Demote horizontal and vertical directions, so that two
// consecutive directions cannot have the same Fcost.
++Gcost;
}
// It costs extra to walk through a being (needs to be enough
// to make it more attractive to walk around).
if (occupied(x, y))
{
Gcost += 30;
}
// Skip if Gcost becomes too much
// Warning: probably not entirely accurate
if (Gcost > 20 * basicCost)
{
continue;
}
if (newTile->whichList != mOnOpenList)
{
// Found a new tile (not on open nor on closed list)
/* Update Hcost of the new tile. The pathfinder does not
work reliably if the heuristic cost is higher than the
real cost. In particular, using Manhattan distance is
forbidden here. */
int dx = std::abs(x - destX), dy = std::abs(y - destY);
newTile->Hcost = std::abs(dx - dy) * basicCost +
std::min(dx, dy) * (basicCost * 362 / 256);
// Set the current tile as the parent of the new tile
newTile->parentX = curr.x;
newTile->parentY = curr.y;
// Update Gcost and Fcost of new tile
newTile->Gcost = Gcost;
newTile->Fcost = newTile->Gcost + newTile->Hcost;
if (x != destX || y != destY) {
// Add this tile to the open list
newTile->whichList = mOnOpenList;
openList.push(Location(x, y, newTile));
}
else {
// Target location was found
foundPath = true;
}
}
else if (Gcost < newTile->Gcost)
{
// Found a shorter route.
// Update Gcost and Fcost of the new tile
newTile->Gcost = Gcost;
newTile->Fcost = newTile->Gcost + newTile->Hcost;
// Set the current tile as the parent of the new tile
newTile->parentX = curr.x;
newTile->parentY = curr.y;
// Add this tile to the open list (it's already
// there, but this instance has a lower F score)
openList.push(Location(x, y, newTile));
}
}
}
}
// Two new values to indicate whether a tile is on the open or closed list,
// this way we don't have to clear all the values between each pathfinding.
mOnClosedList += 2;
mOnOpenList += 2;
// If a path has been found, iterate backwards using the parent locations
// to extract it.
if (foundPath)
{
int pathX = destX;
int pathY = destY;
while (pathX != startX || pathY != startY)
{
// Add the new path node to the start of the path list
path.push_front(PATH_NODE(pathX, pathY));
// Find out the next parent
MetaTile *tile = getMetaTile(pathX, pathY);
pathX = tile->parentX;
pathY = tile->parentY;
}
}
return path;
}