1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
#pragma once
// little.hpp - integers of known endianness
//
// Copyright © 2014 Ben Longbons <b.r.longbons@gmail.com>
//
// This file is part of The Mana World (Athena server)
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "fwd.hpp"
#include <endian.h>
#include <cstdint>
namespace tmwa
{
// We implement our own actual swapping, because glibc emits assembly
// instead of letting the *compiler* do what it does best.
#if __BYTE_ORDER != __BIG_ENDIAN && __BYTE_ORDER != __LITTLE_ENDIAN
# error "broken endians"
#endif
namespace ints
{
// gcc doesn't always provide a builtin for this,
// but it *does* optimize hand-written ones
constexpr
uint16_t bswap16(uint16_t v)
{
return v >> 8 | v << 8;
}
// TODO hoist this to byte.hpp and also implement big.hpp
struct Byte
{
uint8_t value;
};
struct Little16
{
uint8_t data[2];
};
struct Little32
{
uint8_t data[4];
};
struct Little64
{
uint8_t data[8];
};
inline __attribute__((warn_unused_result))
bool native_to_network(Byte *net, uint8_t nat)
{
net->value = nat;
return true;
}
inline __attribute__((warn_unused_result))
bool native_to_network(Little16 *net, uint16_t nat)
{
if (__BYTE_ORDER == __BIG_ENDIAN)
nat = bswap16(nat);
__builtin_memcpy(net, &nat, 2);
return true;
}
inline __attribute__((warn_unused_result))
bool native_to_network(Little32 *net, uint32_t nat)
{
if (__BYTE_ORDER == __BIG_ENDIAN)
nat = __builtin_bswap32(nat);
__builtin_memcpy(net, &nat, 4);
return true;
}
inline __attribute__((warn_unused_result))
bool native_to_network(Little64 *net, uint64_t nat)
{
if (__BYTE_ORDER == __BIG_ENDIAN)
nat = __builtin_bswap64(nat);
__builtin_memcpy(net, &nat, 8);
return true;
}
inline __attribute__((warn_unused_result))
bool network_to_native(uint8_t *nat, Byte net)
{
*nat = net.value;
return true;
}
inline __attribute__((warn_unused_result))
bool network_to_native(uint16_t *nat, Little16 net)
{
uint16_t tmp;
__builtin_memcpy(&tmp, &net, 2);
if (__BYTE_ORDER == __BIG_ENDIAN)
tmp = bswap16(tmp);
*nat = tmp;
return true;
}
inline __attribute__((warn_unused_result))
bool network_to_native(uint32_t *nat, Little32 net)
{
uint32_t tmp;
__builtin_memcpy(&tmp, &net, 4);
if (__BYTE_ORDER == __BIG_ENDIAN)
tmp = __builtin_bswap32(tmp);
*nat = tmp;
return true;
}
inline __attribute__((warn_unused_result))
bool network_to_native(uint64_t *nat, Little64 net)
{
uint64_t tmp;
__builtin_memcpy(&tmp, &net, 8);
if (__BYTE_ORDER == __BIG_ENDIAN)
tmp = __builtin_bswap64(tmp);
*nat = tmp;
return true;
}
} // namespace ints
using ints::Byte;
using ints::Little16;
using ints::Little32;
using ints::Little64;
} // namespace tmwa
|