1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
#ifndef UTILS2_HPP
#define UTILS2_HPP
# include "../sanity.hpp"
# include <algorithm>
# include <functional>
# include <iterator>
# include <memory>
# include <type_traits>
# ifdef __clang__
# define FALLTHROUGH [[clang::fallthrough]]
# else
# define FALLTHROUGH /* fallthrough */
# endif
template<class T, class E, E max>
struct earray
{
// no ctor/dtor and one public member variable for easy initialization
T _data[size_t(max)];
T& operator[](E v)
{
return _data[size_t(v)];
}
const T& operator[](E v) const
{
return _data[size_t(v)];
}
T *begin()
{
return _data;
}
T *end()
{
return _data + size_t(max);
}
const T *begin() const
{
return _data;
}
const T *end() const
{
return _data + size_t(max);
}
friend bool operator == (const earray& l, const earray& r)
{
return std::equal(l.begin(), l.end(), r.begin());
}
friend bool operator != (const earray& l, const earray& r)
{
return !(l == r);
}
};
template<class T, class E>
class eptr
{
T *_data;
public:
eptr(decltype(nullptr)=nullptr)
: _data(nullptr)
{}
template<E max>
eptr(earray<T, E, max>& arr)
: _data(arr._data)
{}
T& operator [](E v)
{
return _data[size_t(v)];
}
explicit operator bool()
{
return _data;
}
bool operator not()
{
return not _data;
}
};
template<class It>
class IteratorPair
{
It _b, _e;
public:
IteratorPair(It b, It e)
: _b(b), _e(e)
{}
It begin() { return _b; }
It end() { return _e; }
};
template<class It>
IteratorPair<It> iterator_pair(It b, It e)
{
return {b, e};
}
// std::underlying_type isn't supported until gcc 4.7
// this is a poor man's emulation
template<class E>
struct underlying_type
{
static_assert(std::is_enum<E>::value, "Only enums have underlying type!");
typedef typename std::conditional<
std::is_signed<E>::value,
typename std::make_signed<E>::type,
typename std::make_unsigned<E>::type
>::type type;
};
template<class E, bool=std::is_enum<E>::value>
struct remove_enum
{
typedef E type;
};
template<class E>
struct remove_enum<E, true>
{
typedef typename underlying_type<E>::type type;
};
# define ENUM_BITWISE_OPERATORS(E) \
inline \
E operator & (E l, E r) \
{ \
typedef underlying_type<E>::type U; \
return E(U(l) & U(r)); \
} \
inline \
E operator | (E l, E r) \
{ \
typedef underlying_type<E>::type U; \
return E(U(l) | U(r)); \
} \
inline \
E operator ^ (E l, E r) \
{ \
typedef underlying_type<E>::type U; \
return E(U(l) ^ U(r)); \
} \
inline \
E& operator &= (E& l, E r) \
{ \
return l = l & r; \
} \
inline \
E& operator |= (E& l, E r) \
{ \
return l = l | r; \
} \
inline \
E& operator ^= (E& l, E r) \
{ \
return l = l ^ r; \
} \
inline \
E operator ~ (E r) \
{ \
return E(-1) ^ r; \
}
template<class E>
class EnumValueIterator
{
typedef typename underlying_type<E>::type U;
E value;
public:
EnumValueIterator(E v)
: value(v)
{}
E operator *()
{
return value;
}
EnumValueIterator& operator++ ()
{
value = E(U(value) + 1);
return *this;
}
EnumValueIterator& operator-- ()
{
value = E(U(value) - 1);
return *this;
}
friend bool operator == (EnumValueIterator l, EnumValueIterator r)
{
return l.value == r.value;
}
friend bool operator != (EnumValueIterator l, EnumValueIterator r)
{
return !(l == r);
}
};
template<class E>
IteratorPair<EnumValueIterator<E>> erange(E b, E e)
{
return {b, e};
}
namespace ph = std::placeholders;
template<class A, class B>
typename std::common_type<A, B>::type min(A a, B b)
{
return a < b ? a : b;
}
template<class A, class B>
typename std::common_type<A, B>::type max(A a, B b)
{
return b < a ? a : b;
}
template<class T>
struct is_array_of_unknown_bound
: std::is_same<T, typename std::remove_extent<T>::type[]>
{};
template<class T, class D=std::default_delete<T>, class... A>
typename std::enable_if<!is_array_of_unknown_bound<T>::value, std::unique_ptr<T, D>>::type make_unique(A&&... a)
{
return std::unique_ptr<T, D>(new T(a...));
}
template<class T, class D=std::default_delete<T>>
typename std::enable_if<is_array_of_unknown_bound<T>::value, std::unique_ptr<T, D>>::type make_unique(size_t sz)
{
typedef typename std::remove_extent<T>::type E;
return std::unique_ptr<E[], D>(new E[sz]());
}
template<class T>
const T& const_(T& t)
{
return t;
}
template<class T, class U>
T no_cast(U&& u)
{
typedef typename std::remove_reference<T>::type Ti;
typedef typename std::remove_reference<U>::type Ui;
typedef typename std::remove_cv<Ti>::type Tb;
typedef typename std::remove_cv<Ui>::type Ub;
static_assert(std::is_same<Tb, Ub>::value, "not no cast");
return std::forward<U>(u);
}
template<class T, class U>
T base_cast(U&& u)
{
static_assert(std::is_reference<T>::value, "must base cast with references");
typedef typename std::remove_reference<T>::type Ti;
typedef typename std::remove_reference<U>::type Ui;
typedef typename std::remove_cv<Ti>::type Tb;
typedef typename std::remove_cv<Ui>::type Ub;
static_assert(std::is_base_of<Tb, Ub>::value, "not base cast");
return std::forward<U>(u);
}
// use this when e.g. U is an int of unknown size
template<class T, class U>
T maybe_cast(U u)
{
return u;
}
template<class T, class U>
typename std::remove_pointer<T>::type *sign_cast(U *u)
{
typedef typename std::remove_pointer<T>::type T_;
static_assert(sizeof(T_) == sizeof(U), "sign cast must be same size");
return reinterpret_cast<T_ *>(u);
}
#endif // UTILS2_HPP
|