1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
#include "timer.hpp"
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "cxxstdio.hpp"
#include "utils.hpp"
static
struct TimerData *timer_data;
static
uint32_t timer_data_max, timer_data_num;
static
timer_id *free_timer_list;
static
uint32_t free_timer_list_max, free_timer_list_pos;
/// Okay, I think I understand this structure now:
/// the timer heap is a magic queue that allows inserting timers and then popping them in order
/// designed to copy only log2(N) entries instead of N
// timer_heap[0] is the size (greatest index into the heap)
// timer_heap[1] is the first actual element
// timer_heap_max increases 256 at a time and never decreases
static
uint32_t timer_heap_max = 0;
/// FIXME: refactor the code to put the size in a separate variable
//nontrivial because indices get multiplied
static
timer_id *timer_heap = NULL;
static
uint32_t gettick_cache;
static
uint8_t gettick_count = 0;
uint32_t gettick_nocache(void)
{
struct timeval tval;
// BUG: This will cause strange behavior if the system clock is changed!
// it should be reimplemented in terms of clock_gettime(CLOCK_MONOTONIC, )
gettimeofday(&tval, NULL);
gettick_count = 255;
return gettick_cache = tval.tv_sec * 1000 + tval.tv_usec / 1000;
}
uint32_t gettick(void)
{
if (gettick_count--)
return gettick_cache;
return gettick_nocache();
}
static
void push_timer_heap(timer_id index)
{
if (timer_heap == NULL || timer_heap[0] + 1 >= timer_heap_max)
{
timer_heap_max += 256;
RECREATE(timer_heap, timer_id, timer_heap_max);
memset(timer_heap + (timer_heap_max - 256), 0, sizeof(timer_id) * 256);
}
// timer_heap[0] is the greatest index into the heap, which increases
timer_heap[0]++;
timer_id h = timer_heap[0]-1, i = (h - 1) / 2;
while (h)
{
// avoid wraparound problems, it really means this:
// timer_data[index].tick >= timer_data[timer_heap[i+1]].tick
if ( DIFF_TICK(timer_data[index].tick, timer_data[timer_heap[i+1]].tick) >= 0)
break;
timer_heap[h + 1] = timer_heap[i + 1];
h = i;
i = (h - 1) / 2;
}
timer_heap[h + 1] = index;
}
static
timer_id top_timer_heap(void)
{
if (!timer_heap || !timer_heap[0])
return -1;
return timer_heap[1];
}
static
timer_id pop_timer_heap(void)
{
if (!timer_heap || !timer_heap[0])
return -1;
timer_id ret = timer_heap[1];
timer_id last = timer_heap[timer_heap[0]];
timer_heap[0]--;
uint32_t h, k;
for (h = 0, k = 2; k < timer_heap[0]; k = k * 2 + 2)
{
if (DIFF_TICK(timer_data[timer_heap[k + 1]].tick, timer_data[timer_heap[k]].tick) > 0)
k--;
timer_heap[h + 1] = timer_heap[k + 1], h = k;
}
if (k == timer_heap[0])
timer_heap[h + 1] = timer_heap[k], h = k - 1;
uint32_t i = (h - 1) / 2;
while (h)
{
if (DIFF_TICK(timer_data[timer_heap[i + 1]].tick, timer_data[last].tick) <= 0)
break;
timer_heap[h + 1] = timer_heap[i + 1];
h = i;
i = (h - 1) / 2;
}
timer_heap[h + 1] = last;
return ret;
}
timer_id add_timer(tick_t tick, timer_func func, custom_id_t id, custom_data_t data)
{
timer_id i;
if (free_timer_list_pos)
{
// Retrieve a freed timer id instead of a new one
// I think it should be possible to avoid the loop somehow
do
{
i = free_timer_list[--free_timer_list_pos];
}
while (i >= timer_data_num && free_timer_list_pos > 0);
}
else
i = timer_data_num;
// I have no idea what this is doing
if (i >= timer_data_num)
for (i = timer_data_num; i < timer_data_max && timer_data[i].type; i++)
;
if (i >= timer_data_num && i >= timer_data_max)
{
if (timer_data_max == 0)
{
timer_data_max = 256;
CREATE(timer_data, struct TimerData, timer_data_max);
}
else
{
timer_data_max += 256;
RECREATE(timer_data, struct TimerData, timer_data_max);
memset(timer_data + (timer_data_max - 256), 0,
sizeof(struct TimerData) * 256);
}
}
timer_data[i].tick = tick;
timer_data[i].func = func;
timer_data[i].id = id;
timer_data[i].data = data;
timer_data[i].type = TIMER_ONCE_AUTODEL;
timer_data[i].interval = 1000;
push_timer_heap(i);
if (i >= timer_data_num)
timer_data_num = i + 1;
return i;
}
timer_id add_timer_interval(tick_t tick, timer_func func, custom_id_t id,
custom_data_t data, interval_t interval)
{
timer_id tid = add_timer(tick, func, id, data);
timer_data[tid].type = TIMER_INTERVAL;
timer_data[tid].interval = interval;
return tid;
}
void delete_timer(timer_id id, timer_func func)
{
if (id == 0 || id >= timer_data_num)
{
FPRINTF(stderr, "delete_timer error : no such timer %d\n", id);
abort();
}
if (timer_data[id].func != func)
{
FPRINTF(stderr, "Timer mismatch\n");
abort();
}
// "to let them disappear" - is this just in case?
timer_data[id].func = NULL;
timer_data[id].type = TIMER_ONCE_AUTODEL;
timer_data[id].tick -= 60 * 60 * 1000;
}
tick_t addtick_timer(timer_id tid, interval_t tick)
{
return timer_data[tid].tick += tick;
}
struct TimerData *get_timer(timer_id tid)
{
return &timer_data[tid];
}
interval_t do_timer(tick_t tick)
{
timer_id i;
/// Number of milliseconds until it calls this again
// this says to wait 1 sec if all timers get popped
interval_t nextmin = 1000;
while ((i = top_timer_heap()) != (timer_id)-1)
{
// while the heap is not empty and
if (DIFF_TICK(timer_data[i].tick, tick) > 0)
{
/// Return the time until the next timer needs to goes off
nextmin = DIFF_TICK(timer_data[i].tick, tick);
break;
}
pop_timer_heap();
if (timer_data[i].func)
{
if (DIFF_TICK(timer_data[i].tick, tick) < -1000)
{
// If we are too far past the requested tick, call with the current tick instead to fix reregistering problems
timer_data[i].func(i, tick, timer_data[i].id, timer_data[i].data);
}
else
{
timer_data[i].func(i, timer_data[i].tick, timer_data[i].id, timer_data[i].data);
}
}
switch (timer_data[i].type)
{
case TIMER_ONCE_AUTODEL:
timer_data[i].type = TIMER_NONE;
if (free_timer_list_pos >= free_timer_list_max)
{
free_timer_list_max += 256;
RECREATE(free_timer_list, uint32_t, free_timer_list_max);
memset(free_timer_list + (free_timer_list_max - 256),
0, 256 * sizeof(uint32_t));
}
free_timer_list[free_timer_list_pos++] = i;
break;
case TIMER_INTERVAL:
if (DIFF_TICK(timer_data[i].tick, tick) < -1000)
{
timer_data[i].tick = tick + timer_data[i].interval;
}
else
{
timer_data[i].tick += timer_data[i].interval;
}
push_timer_heap(i);
break;
}
}
if (nextmin < 10)
nextmin = 10;
return nextmin;
}
|