#include "timer.hpp"
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "cxxstdio.hpp"
#include "utils.hpp"
static
struct TimerData *timer_data;
static
uint32_t timer_data_max, timer_data_num;
static
timer_id *free_timer_list;
static
uint32_t free_timer_list_max, free_timer_list_pos;
/// Okay, I think I understand this structure now:
/// the timer heap is a magic queue that allows inserting timers and then popping them in order
/// designed to copy only log2(N) entries instead of N
// timer_heap[0] is the size (greatest index into the heap)
// timer_heap[1] is the first actual element
// timer_heap_max increases 256 at a time and never decreases
static
uint32_t timer_heap_max = 0;
/// FIXME: refactor the code to put the size in a separate variable
//nontrivial because indices get multiplied
static
timer_id *timer_heap = NULL;
static
uint32_t gettick_cache;
static
uint8_t gettick_count = 0;
uint32_t gettick_nocache(void)
{
struct timeval tval;
// BUG: This will cause strange behavior if the system clock is changed!
// it should be reimplemented in terms of clock_gettime(CLOCK_MONOTONIC, )
gettimeofday(&tval, NULL);
gettick_count = 255;
return gettick_cache = tval.tv_sec * 1000 + tval.tv_usec / 1000;
}
uint32_t gettick(void)
{
if (gettick_count--)
return gettick_cache;
return gettick_nocache();
}
static
void push_timer_heap(timer_id index)
{
if (timer_heap == NULL || timer_heap[0] + 1 >= timer_heap_max)
{
timer_heap_max += 256;
RECREATE(timer_heap, timer_id, timer_heap_max);
memset(timer_heap + (timer_heap_max - 256), 0, sizeof(timer_id) * 256);
}
// timer_heap[0] is the greatest index into the heap, which increases
timer_heap[0]++;
timer_id h = timer_heap[0]-1, i = (h - 1) / 2;
while (h)
{
// avoid wraparound problems, it really means this:
// timer_data[index].tick >= timer_data[timer_heap[i+1]].tick
if ( DIFF_TICK(timer_data[index].tick, timer_data[timer_heap[i+1]].tick) >= 0)
break;
timer_heap[h + 1] = timer_heap[i + 1];
h = i;
i = (h - 1) / 2;
}
timer_heap[h + 1] = index;
}
static
timer_id top_timer_heap(void)
{
if (!timer_heap || !timer_heap[0])
return -1;
return timer_heap[1];
}
static
timer_id pop_timer_heap(void)
{
if (!timer_heap || !timer_heap[0])
return -1;
timer_id ret = timer_heap[1];
timer_id last = timer_heap[timer_heap[0]];
timer_heap[0]--;
uint32_t h, k;
for (h = 0, k = 2; k < timer_heap[0]; k = k * 2 + 2)
{
if (DIFF_TICK(timer_data[timer_heap[k + 1]].tick, timer_data[timer_heap[k]].tick) > 0)
k--;
timer_heap[h + 1] = timer_heap[k + 1], h = k;
}
if (k == timer_heap[0])
timer_heap[h + 1] = timer_heap[k], h = k - 1;
uint32_t i = (h - 1) / 2;
while (h)
{
if (DIFF_TICK(timer_data[timer_heap[i + 1]].tick, timer_data[last].tick) <= 0)
break;
timer_heap[h + 1] = timer_heap[i + 1];
h = i;
i = (h - 1) / 2;
}
timer_heap[h + 1] = last;
return ret;
}
timer_id add_timer(tick_t tick, timer_func func, custom_id_t id, custom_data_t data)
{
timer_id i;
if (free_timer_list_pos)
{
// Retrieve a freed timer id instead of a new one
// I think it should be possible to avoid the loop somehow
do
{
i = free_timer_list[--free_timer_list_pos];
}
while (i >= timer_data_num && free_timer_list_pos > 0);
}
else
i = timer_data_num;
// I have no idea what this is doing
if (i >= timer_data_num)
for (i = timer_data_num; i < timer_data_max && timer_data[i].type; i++)
;
if (i >= timer_data_num && i >= timer_data_max)
{
if (timer_data_max == 0)
{
timer_data_max = 256;
CREATE(timer_data, struct TimerData, timer_data_max);
}
else
{
timer_data_max += 256;
RECREATE(timer_data, struct TimerData, timer_data_max);
memset(timer_data + (timer_data_max - 256), 0,
sizeof(struct TimerData) * 256);
}
}
timer_data[i].tick = tick;
timer_data[i].func = func;
timer_data[i].id = id;
timer_data[i].data = data;
timer_data[i].type = TIMER_ONCE_AUTODEL;
timer_data[i].interval = 1000;
push_timer_heap(i);
if (i >= timer_data_num)
timer_data_num = i + 1;
return i;
}
timer_id add_timer_interval(tick_t tick, timer_func func, custom_id_t id,
custom_data_t data, interval_t interval)
{
timer_id tid = add_timer(tick, func, id, data);
timer_data[tid].type = TIMER_INTERVAL;
timer_data[tid].interval = interval;
return tid;
}
void delete_timer(timer_id id, timer_func func)
{
if (id == 0 || id >= timer_data_num)
{
FPRINTF(stderr, "delete_timer error : no such timer %d\n", id);
abort();
}
if (timer_data[id].func != func)
{
FPRINTF(stderr, "Timer mismatch\n");
abort();
}
// "to let them disappear" - is this just in case?
timer_data[id].func = NULL;
timer_data[id].type = TIMER_ONCE_AUTODEL;
timer_data[id].tick -= 60 * 60 * 1000;
}
tick_t addtick_timer(timer_id tid, interval_t tick)
{
return timer_data[tid].tick += tick;
}
struct TimerData *get_timer(timer_id tid)
{
return &timer_data[tid];
}
interval_t do_timer(tick_t tick)
{
timer_id i;
/// Number of milliseconds until it calls this again
// this says to wait 1 sec if all timers get popped
interval_t nextmin = 1000;
while ((i = top_timer_heap()) != (timer_id)-1)
{
// while the heap is not empty and
if (DIFF_TICK(timer_data[i].tick, tick) > 0)
{
/// Return the time until the next timer needs to goes off
nextmin = DIFF_TICK(timer_data[i].tick, tick);
break;
}
pop_timer_heap();
if (timer_data[i].func)
{
if (DIFF_TICK(timer_data[i].tick, tick) < -1000)
{
// If we are too far past the requested tick, call with the current tick instead to fix reregistering problems
timer_data[i].func(i, tick, timer_data[i].id, timer_data[i].data);
}
else
{
timer_data[i].func(i, timer_data[i].tick, timer_data[i].id, timer_data[i].data);
}
}
switch (timer_data[i].type)
{
case TIMER_ONCE_AUTODEL:
timer_data[i].type = TIMER_NONE;
if (free_timer_list_pos >= free_timer_list_max)
{
free_timer_list_max += 256;
RECREATE(free_timer_list, uint32_t, free_timer_list_max);
memset(free_timer_list + (free_timer_list_max - 256),
0, 256 * sizeof(uint32_t));
}
free_timer_list[free_timer_list_pos++] = i;
break;
case TIMER_INTERVAL:
if (DIFF_TICK(timer_data[i].tick, tick) < -1000)
{
timer_data[i].tick = tick + timer_data[i].interval;
}
else
{
timer_data[i].tick += timer_data[i].interval;
}
push_timer_heap(i);
break;
}
}
if (nextmin < 10)
nextmin = 10;
return nextmin;
}