1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/**
* This file is part of Hercules.
* http://herc.ws - http://github.com/HerculesWS/Hercules
*
* Copyright (C) 2012-2015 Hercules Dev Team
* Copyright (C) Athena Dev Teams
*
* Hercules is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define HERCULES_CORE
#include "des.h"
#include "common/cbasetypes.h"
/// DES (Data Encryption Standard) algorithm, modified version.
/// @see http://www.eathena.ws/board/index.php?autocom=bugtracker&showbug=5099.
/// @see http://en.wikipedia.org/wiki/Data_Encryption_Standard
/// @see http://en.wikipedia.org/wiki/DES_supplementary_material
/// Bitmask for accessing individual bits of a byte.
static const uint8_t mask[8] = {
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};
/// Initial permutation (IP).
static void IP(BIT64* src)
{
BIT64 tmp = {{0}};
static const uint8_t ip_table[64] = {
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,
};
size_t i;
for( i = 0; i < ARRAYLENGTH(ip_table); ++i )
{
uint8_t j = ip_table[i] - 1;
if( src->b[(j >> 3) & 7] & mask[j & 7] )
tmp .b[(i >> 3) & 7] |= mask[i & 7];
}
*src = tmp;
}
/// Final permutation (IP^-1).
static void FP(BIT64* src)
{
BIT64 tmp = {{0}};
static const uint8_t fp_table[64] = {
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25,
};
size_t i;
for( i = 0; i < ARRAYLENGTH(fp_table); ++i )
{
uint8_t j = fp_table[i] - 1;
if( src->b[(j >> 3) & 7] & mask[j & 7] )
tmp .b[(i >> 3) & 7] |= mask[i & 7];
}
*src = tmp;
}
/// Expansion (E).
/// Expands upper four 8-bits (32b) into eight 6-bits (48b).
static void E(BIT64* src)
{
BIT64 tmp = {{0}};
#if 0
// original
static const uint8_t expand_table[48] = {
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1,
};
size_t i;
for( i = 0; i < ARRAYLENGTH(expand_table); ++i )
{
uint8_t j = expand_table[i] - 1;
if( src->b[j / 8 + 4] & mask[j % 8] )
tmp .b[i / 6 + 0] |= mask[i % 6];
}
#endif
// optimized
tmp.b[0] = ((src->b[7]<<5) | (src->b[4]>>3)) & 0x3f; // ..0 vutsr
tmp.b[1] = ((src->b[4]<<1) | (src->b[5]>>7)) & 0x3f; // ..srqpo n
tmp.b[2] = ((src->b[4]<<5) | (src->b[5]>>3)) & 0x3f; // ..o nmlkj
tmp.b[3] = ((src->b[5]<<1) | (src->b[6]>>7)) & 0x3f; // ..kjihg f
tmp.b[4] = ((src->b[5]<<5) | (src->b[6]>>3)) & 0x3f; // ..g fedcb
tmp.b[5] = ((src->b[6]<<1) | (src->b[7]>>7)) & 0x3f; // ..cba98 7
tmp.b[6] = ((src->b[6]<<5) | (src->b[7]>>3)) & 0x3f; // ..8 76543
tmp.b[7] = ((src->b[7]<<1) | (src->b[4]>>7)) & 0x3f; // ..43210 v
*src = tmp;
}
/// Transposition (P-BOX).
static void TP(BIT64* src)
{
BIT64 tmp = {{0}};
static const uint8_t tp_table[32] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25,
};
size_t i;
for( i = 0; i < ARRAYLENGTH(tp_table); ++i )
{
uint8_t j = tp_table[i] - 1;
if( src->b[(j >> 3) + 0] & mask[j & 7] )
tmp .b[(i >> 3) + 4] |= mask[i & 7];
}
*src = tmp;
}
/// Substitution boxes (S-boxes).
/// NOTE: This implementation was optimized to process two nibbles in one step (twice as fast).
static void SBOX(BIT64* src)
{
BIT64 tmp = {{0}};
static const uint8_t s_table[4][64] = {
{
0xef, 0x03, 0x41, 0xfd, 0xd8, 0x74, 0x1e, 0x47, 0x26, 0xef, 0xfb, 0x22, 0xb3, 0xd8, 0x84, 0x1e,
0x39, 0xac, 0xa7, 0x60, 0x62, 0xc1, 0xcd, 0xba, 0x5c, 0x96, 0x90, 0x59, 0x05, 0x3b, 0x7a, 0x85,
0x40, 0xfd, 0x1e, 0xc8, 0xe7, 0x8a, 0x8b, 0x21, 0xda, 0x43, 0x64, 0x9f, 0x2d, 0x14, 0xb1, 0x72,
0xf5, 0x5b, 0xc8, 0xb6, 0x9c, 0x37, 0x76, 0xec, 0x39, 0xa0, 0xa3, 0x05, 0x52, 0x6e, 0x0f, 0xd9,
},{
0xa7, 0xdd, 0x0d, 0x78, 0x9e, 0x0b, 0xe3, 0x95, 0x60, 0x36, 0x36, 0x4f, 0xf9, 0x60, 0x5a, 0xa3,
0x11, 0x24, 0xd2, 0x87, 0xc8, 0x52, 0x75, 0xec, 0xbb, 0xc1, 0x4c, 0xba, 0x24, 0xfe, 0x8f, 0x19,
0xda, 0x13, 0x66, 0xaf, 0x49, 0xd0, 0x90, 0x06, 0x8c, 0x6a, 0xfb, 0x91, 0x37, 0x8d, 0x0d, 0x78,
0xbf, 0x49, 0x11, 0xf4, 0x23, 0xe5, 0xce, 0x3b, 0x55, 0xbc, 0xa2, 0x57, 0xe8, 0x22, 0x74, 0xce,
},{
0x2c, 0xea, 0xc1, 0xbf, 0x4a, 0x24, 0x1f, 0xc2, 0x79, 0x47, 0xa2, 0x7c, 0xb6, 0xd9, 0x68, 0x15,
0x80, 0x56, 0x5d, 0x01, 0x33, 0xfd, 0xf4, 0xae, 0xde, 0x30, 0x07, 0x9b, 0xe5, 0x83, 0x9b, 0x68,
0x49, 0xb4, 0x2e, 0x83, 0x1f, 0xc2, 0xb5, 0x7c, 0xa2, 0x19, 0xd8, 0xe5, 0x7c, 0x2f, 0x83, 0xda,
0xf7, 0x6b, 0x90, 0xfe, 0xc4, 0x01, 0x5a, 0x97, 0x61, 0xa6, 0x3d, 0x40, 0x0b, 0x58, 0xe6, 0x3d,
},{
0x4d, 0xd1, 0xb2, 0x0f, 0x28, 0xbd, 0xe4, 0x78, 0xf6, 0x4a, 0x0f, 0x93, 0x8b, 0x17, 0xd1, 0xa4,
0x3a, 0xec, 0xc9, 0x35, 0x93, 0x56, 0x7e, 0xcb, 0x55, 0x20, 0xa0, 0xfe, 0x6c, 0x89, 0x17, 0x62,
0x17, 0x62, 0x4b, 0xb1, 0xb4, 0xde, 0xd1, 0x87, 0xc9, 0x14, 0x3c, 0x4a, 0x7e, 0xa8, 0xe2, 0x7d,
0xa0, 0x9f, 0xf6, 0x5c, 0x6a, 0x09, 0x8d, 0xf0, 0x0f, 0xe3, 0x53, 0x25, 0x95, 0x36, 0x28, 0xcb,
}
};
size_t i;
for( i = 0; i < ARRAYLENGTH(s_table); ++i )
{
tmp.b[i] = (s_table[i][src->b[i*2+0]] & 0xf0)
| (s_table[i][src->b[i*2+1]] & 0x0f);
}
*src = tmp;
}
/// DES round function.
/// XORs src[0..3] with TP(SBOX(E(src[4..7]))).
static void RoundFunction(BIT64* src)
{
BIT64 tmp = *src;
E(&tmp);
SBOX(&tmp);
TP(&tmp);
src->b[0] ^= tmp.b[4];
src->b[1] ^= tmp.b[5];
src->b[2] ^= tmp.b[6];
src->b[3] ^= tmp.b[7];
}
void des_decrypt_block(BIT64* block)
{
IP(block);
RoundFunction(block);
FP(block);
}
void des_decrypt(unsigned char* data, size_t size)
{
BIT64* p = (BIT64*)data;
size_t i;
for( i = 0; i*8 < size; i += 8 )
des_decrypt_block(p);
}
|