1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
#include "astar.h"
#include "being.h"
const int numberPeople = 1;
int onClosedList = 10;
const int notfinished = 0;// path-related constants
//Create needed arrays
//char get_path_walk [MAP_WIDTH][MAP_HEIGHT];
int openList[MAP_WIDTH*MAP_HEIGHT+2]; //1 dimensional array holding ID# of open list items
int whichList[MAP_WIDTH+1][MAP_HEIGHT+1]; //2 dimensional array used to record
// whether a cell is on the open list or on the closed list.
int openX[MAP_WIDTH*MAP_HEIGHT+2]; //1d array stores the x location of an item on the open list
int openY[MAP_WIDTH*MAP_HEIGHT+2]; //1d array stores the y location of an item on the open list
int parentX[MAP_WIDTH+1][MAP_HEIGHT+1]; //2d array to store parent of each cell (x)
int parentY[MAP_WIDTH+1][MAP_HEIGHT+1]; //2d array to store parent of each cell (y)
int F_cost[MAP_WIDTH*MAP_HEIGHT+2]; //1d array to store F cost of a cell on the open list
int G_cost[MAP_WIDTH+1][MAP_HEIGHT+1]; //2d array to store G_cost cost for each cell.
int H_cost[MAP_WIDTH*MAP_HEIGHT+2]; //1d array to store H cost of a cell on the open list
int pathLength; //stores length of the FOUND path for critter
int pathLocation; //stores current position along the chosen path for critter
int* path_bank ;
//Path reading variables
int pathStatus;
int xPath;
int yPath;
/** Initialize pathfinder */
void pathfinder_init() {
path_bank = (int*)malloc(4);
}
/** Exit pathfinder */
void pathfinder_exit() {
free(path_bank);
}
/** Find path */
PATH_NODE *find_path(int pathfinderID, int s_x, int s_y, int e_x, int e_y) {
int onOpenList=0, parentXval=0, parentYval=0,
a=0, b=0, m=0, u=0, v=0, temp=0, corner=0, numberOfOpenListItems=0,
addedGCost=0, tempG = 0, path = 0, x=0, y=0,
tempx, pathX, pathY, cellPosition,
newOpenListItemID=0;
// If starting location and target are in the same location...
if (s_x==e_x && s_y==e_y && pathLocation>0)return NULL;
else if (s_x==e_x && s_y==e_y && pathLocation==0)return NULL;
// If dest tile is NOT_WALKABLE, return that it's a NOT_FOUND path.
if(get_path_walk(e_x, e_y)==NOT_WALKABLE) {
xPath = s_x;
yPath = s_y;
return NULL;
}
// Reset some variables that need to be cleared
for(x=0;x<MAP_WIDTH;x++) {
for(y=0;y<MAP_HEIGHT;y++)
whichList [x][y] = 0;
}
onClosedList = 2; //changing the values of onOpenList and onClosed list is faster than redimming whichList() array
onOpenList = 1;
pathLength = NOT_STARTED;
pathLocation = NOT_STARTED;
G_cost[s_x][s_y] = 0; //reset starting square's G_cost value to 0
// Add the starting location to the open list of tiles to be checked.
numberOfOpenListItems = 1;
openList[1] = 1;//assign it as the top (and currently only) item in the open list, which is maintained as a binary heap (explained below)
openX[1] = s_x ; openY[1] = s_y;
// Do the following until a path is FOUND or deemed NOT_FOUND.
do {
// If the open list is not empty, take the first cell off of the list.
// This is the lowest F cost cell on the open list.
if (numberOfOpenListItems != 0) {
// Pop the first item off the open list.
parentXval = openX[openList[1]];
parentYval = openY[openList[1]]; //record cell coordinates of the item
whichList[parentXval][parentYval] = onClosedList;//add the item to the closed list
// Open List = Binary Heap: Delete this item from the open list, which
numberOfOpenListItems = numberOfOpenListItems - 1;//reduce number of open list items by 1
// Delete the top item in binary heap and reorder the heap, with the lowest F cost item rising to the top.
openList[1] = openList[numberOfOpenListItems+1];//move the last item in the heap up to slot #1
v = 1;
// Repeat the following until the new item in slot #1 sinks to its proper spot in the heap.
do {
u = v;
if (2*u+1 <= numberOfOpenListItems) { //if both children exist
//Check if the F cost of the parent is greater than each child.
//Select the lowest of the two children.
if(F_cost[openList[u]] >= F_cost[openList[2*u]])v = 2*u;
if(F_cost[openList[v]] >= F_cost[openList[2*u+1]])v = 2*u+1;
} else {
if (2*u <= numberOfOpenListItems) { //if only child #1 exists
//Check if the F cost of the parent is greater than child #1
if (F_cost[openList[u]] >= F_cost[openList[2*u]])v = 2*u;
}
}
if (u!=v) { // if parent's F is > one of its children, swap them
temp = openList[u];
openList[u] = openList[v];
openList[v] = temp;
} else break; //otherwise, exit loop
} while (u!=v); //reorder the binary heap
// Check the adjacent squares. (Its "children" -- these path children
// are similar, conceptually, to the binary heap children mentioned
// above, but don't confuse them. They are different. Path children
// are portrayed in Demo 1 with grey pointers pointing toward
// their parents.) Add these adjacent child squares to the open list
// for later consideration if appropriate (see various if statements
// below).
for(b=parentYval-1;b<=parentYval+1;b++) {
for(a=parentXval-1;a<=parentXval+1;a++) {
// If not off the map (do this first to avoid array out-of-bounds errors)
if(a!=-1 && b!=-1 && a!=MAP_WIDTH && b!=MAP_HEIGHT) {
// If not already on the closed list (items on the closed list have
// already been considered and can now be ignored).
if(whichList[a][b]!=onClosedList) {
// If not a wall/obstacle square.
if (get_path_walk(a, b)!=NOT_WALKABLE) {
// Don't cut across corners
corner = WALKABLE;
if(a==parentXval-1) {
if(b==parentYval-1) {
if(get_path_walk(parentXval-1, parentYval)==NOT_WALKABLE || get_path_walk(parentXval, parentYval-1)==NOT_WALKABLE) // cera slash
corner = NOT_WALKABLE;
} else if (b==parentYval+1) {
if(get_path_walk(parentXval, parentYval+1)==NOT_WALKABLE || get_path_walk(parentXval-1, parentYval)==NOT_WALKABLE)
corner = NOT_WALKABLE;
}
} else if(a==parentXval+1) {
if(b==parentYval-1) {
if(get_path_walk(parentXval, parentYval-1)==NOT_WALKABLE || get_path_walk(parentXval+1, parentYval)==NOT_WALKABLE)
corner = NOT_WALKABLE;
} else if(b==parentYval+1) {
if(get_path_walk(parentXval+1, parentYval)==NOT_WALKABLE || get_path_walk(parentXval, parentYval+1)==NOT_WALKABLE)
corner = NOT_WALKABLE;
}
}
if(corner==WALKABLE) {
// If not already on the open list, add it to the open list.
if (whichList[a][b]!=onOpenList) {
// Create a new open list item in the binary heap.
newOpenListItemID = newOpenListItemID + 1; //each new item has a unique ID #
m = numberOfOpenListItems+1;
openList[m] = newOpenListItemID;//place the new open list item (actually, its ID#) at the bottom of the heap
openX[newOpenListItemID] = a;
openY[newOpenListItemID] = b;//record the x and y coordinates of the new item
//Figure out its G_cost cost
if (abs(a-parentXval) == 1 && abs(b-parentYval) == 1)addedGCost = 14;//cost of going to diagonal squares
else addedGCost = 10;//cost of going to non-diagonal squares
G_cost[a][b] = G_cost[parentXval][parentYval] + addedGCost;
//Figure out its H and F costs and parent
H_cost[openList[m]] = 10*(abs(a - e_x) + abs(b - e_y));
F_cost[openList[m]] = G_cost[a][b] + H_cost[openList[m]];
parentX[a][b] = parentXval ; parentY[a][b] = parentYval;
//Move the new open list item to the proper place in the binary heap.
//Starting at the bottom, successively compare to parent items,
//swapping as needed until the item finds its place in the heap
//or bubbles all the way to the top (if it has the lowest F cost).
while(m!=1) { // While item hasn't bubbled to the top (m=1)
//Check if child's F cost is < parent's F cost. If so, swap them.
if(F_cost[openList[m]]<=F_cost[openList[m/2]]) {
temp = openList[m/2];
openList[m/2] = openList[m];
openList[m] = temp;
m = m/2;
} else break;
}
numberOfOpenListItems = numberOfOpenListItems+1;//add one to the number of items in the heap
//Change whichList to show that the new item is on the open list.
whichList[a][b] = onOpenList;
} else { // If whichList(a,b) = onOpenList
// If adjacent cell is already on the open list, check to see if this
// path to that cell from the starting location is a better one.
// If so, change the parent of the cell and its G_cost and F costs.
//Figure out the G_cost cost of this possible new path
if(abs(a-parentXval)==1 && abs(b-parentYval)==1)addedGCost = 14;//cost of going to diagonal tiles
else addedGCost = 10;//cost of going to non-diagonal tiles
tempG = G_cost[parentXval][parentYval] + addedGCost;
// If this path is shorter (G_cost cost is lower) then change
// the parent cell, G_cost cost and F cost.
if(tempG<G_cost[a][b]) { //if G_cost cost is less,
parentX[a][b] = parentXval; //change the square's parent
parentY[a][b] = parentYval;
G_cost[a][b] = tempG;//change the G_cost cost
// Because changing the G_cost cost also changes the F cost, if
// the item is on the open list we need to change the item's
// recorded F cost and its position on the open list to make
// sure that we maintain a properly ordered open list.
for(int x=1;x<=numberOfOpenListItems;x++) { //look for the item in the heap
if(openX[openList[x]]==a && openY[openList[x]]==b) { //item FOUND
F_cost[openList[x]] = G_cost[a][b] + H_cost[openList[x]];//change the F cost
//See if changing the F score bubbles the item up from it's current location in the heap
m = x;
while(m!=1) { //While item hasn't bubbled to the top (m=1)
//Check if child is < parent. If so, swap them.
if(F_cost[openList[m]]<F_cost[openList[m/2]]) {
temp = openList[m/2];
openList[m/2] = openList[m];
openList[m] = temp;
m = m/2;
} else break;
}
break; //exit for x = loop
} // If openX(openList(x)) = a
} // For x = 1 To numberOfOpenListItems
} // If tempG < G_cost(a,b)
} // else If whichList(a,b) = onOpenList
} // If not cutting a corner
} // If not a wall/obstacle square.
} // If not already on the closed list
} // If not off the map
} // for (a = parentXval-1; a <= parentXval+1; a++){
} // for (b = parentYval-1; b <= parentYval+1; b++){
} else {// if (numberOfOpenListItems != 0)
// If open list is empty then there is no path.
path = NOT_FOUND;
break;
}
//If target is added to open list then path has been FOUND.
if (whichList[e_x][e_y]==onOpenList) {
path = FOUND;
break;
}
} while (path!=FOUND && path!=NOT_FOUND);//Do until path is FOUND or deemed NOT_FOUND
// Save the path if it exists.
if (path == FOUND) {
// Working backwards from the target to the starting location by checking
// each cell's parent, figure out the length of the path.
pathX = e_x; pathY = e_y;
do {
//Look up the parent of the current cell.
tempx = parentX[pathX][pathY];
pathY = parentY[pathX][pathY];
pathX = tempx;
//Figure out the path length
pathLength = pathLength + 1;
} while (pathX != s_x || pathY != s_y);
// Resize the data bank to the right size in bytes
path_bank = (int*) realloc (path_bank, pathLength*8);
// Now copy the path information over to the databank. Since we are
// working backwards from the target to the start location, we copy
// the information to the data bank in reverse order. The result is
// a properly ordered set of path data, from the first step to the last.
pathX = e_x ; pathY = e_y;
cellPosition = pathLength*2;//start at the end
do {
cellPosition = cellPosition - 2;//work backwards 2 integers
path_bank [cellPosition] = pathX;
path_bank [cellPosition+1] = pathY;
// Look up the parent of the current cell.
tempx = parentX[pathX][pathY];
pathY = parentY[pathX][pathY];
pathX = tempx;
// If we have reached the starting square, exit the loop.
} while(pathX!=s_x || pathY!=s_y);
char stringa[80];
sprintf(stringa,"%i %i",s_x,s_y);
PATH_NODE *ret = NULL, *temp = NULL;
pathLocation = 1;
ret = create_path_node(s_x,s_y);
temp = ret;
//alert(stringa,"","","","",0,0);
while(pathLocation<pathLength) {
sprintf(stringa,"%i %i",path_bank[pathLocation*2-2], path_bank[pathLocation*2-1]);
//alert(stringa,"","","","",0,0);
temp->next = create_path_node(path_bank[pathLocation*2-2], path_bank[pathLocation*2-1]);
if(temp->next==NULL)ok("Error", "Unable to create path node");
temp = temp->next;
pathLocation++;
}
if(temp!=NULL)temp->next = create_path_node(e_x, e_y);
else ok("Error", "Null reference");
return ret;
}
return NULL; // Path not found
}
/** Read the path data */
void ReadPath(int pathfinderID) {
//If a path exists, read the path data
// from the pathbank.
pathLocation = 1; //set pathLocation to 1st step
while (pathLocation<pathLength) {
int a = path_bank [pathLocation*2-2];
int b = path_bank [pathLocation*2-1];
pathLocation = pathLocation + 1;
whichList[a][b] = 3;//draw dotted path
}
}
|