1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
#ifndef SOCKET_HPP
#define SOCKET_HPP
# include "sanity.hpp"
# include <netinet/in.h>
# include <cstdio>
# include <array>
# include "dumb_ptr.hpp"
# include "utils.hpp"
# include "timer.t.hpp"
struct SessionData
{
};
struct SessionDeleter
{
// defined per-server
void operator()(SessionData *sd);
};
// Struct declaration
struct socket_data
{
/// Checks whether a newly-connected socket actually does anything
TimeT created;
bool connected;
/// Flag needed since structure must be freed in a server-dependent manner
bool eof;
/// Since this is a single-threaded application, it can't block
/// These are the read/write queues
dumb_ptr<uint8_t[]> rdata, wdata;
size_t max_rdata, max_wdata;
/// How much is actually in the queue
size_t rdata_size, wdata_size;
/// How much has already been read from the queue
/// Note that there is no need for a wdata_pos
size_t rdata_pos;
struct sockaddr_in client_addr;
/// Send or recieve
/// Only called when select() indicates the socket is ready
/// If, after that, nothing is read, it sets eof
// These could probably be hard-coded with a little work
void (*func_recv)(int);
void (*func_send)(int);
/// This is the important one
/// Set to different functions depending on whether the connection
/// is a player or a server/ladmin
/// Can be set explicitly or via set_defaultparse
void (*func_parse)(int);
/// Server-specific data type
std::unique_ptr<SessionData, SessionDeleter> session_data;
};
// save file descriptors for important stuff
constexpr int SOFT_LIMIT = FD_SETSIZE - 50;
// socket timeout to establish a full connection in seconds
constexpr int CONNECT_TIMEOUT = 15;
/// Everyone who has connected
// note: call delete_session(i) to null out an element
extern std::array<std::unique_ptr<socket_data>, FD_SETSIZE> session;
/// Maximum used FD, +1
extern int fd_max;
/// open a socket, bind, and listen. Return an fd, or -1 if socket() fails,
/// but exit if bind() or listen() fails
int make_listen_port(uint16_t port);
/// Connect to an address, return a connected socket or -1
// FIXME - this is IPv4 only!
int make_connection(uint32_t ip, uint16_t port);
/// free() the structure and close() the fd
void delete_session(int);
/// Make a the internal queues bigger
void realloc_fifo(int fd, size_t rfifo_size, size_t wfifo_size);
/// Update all sockets that can be read/written from the queues
void do_sendrecv(interval_t next);
/// Call the parser function for every socket that has read data
void do_parsepacket(void);
/// An init function
void do_socket(void);
/// Change the default parser for newly connected clients
// typically called once per server, but individual clients may identify
// themselves as servers
void set_defaultparse(void(*defaultparse)(int));
/// Wrappers to track number of free FDs
void fclose_(FILE * fp);
FILE *fopen_(const char *path, const char *mode);
bool free_fds(void);
template<class T>
uint8_t *pod_addressof(T& structure)
{
static_assert(is_trivially_copyable<T>::value, "Can only byte-copy POD-ish structs");
return &reinterpret_cast<uint8_t&>(structure);
}
/// Check how much can be read
inline
size_t RFIFOREST(int fd)
{
return session[fd]->rdata_size - session[fd]->rdata_pos;
}
/// Read from the queue
inline
const void *RFIFOP(int fd, size_t pos)
{
return &session[fd]->rdata[session[fd]->rdata_pos + pos];
}
inline
uint8_t RFIFOB(int fd, size_t pos)
{
return *static_cast<const uint8_t *>(RFIFOP(fd, pos));
}
inline
uint16_t RFIFOW(int fd, size_t pos)
{
return *static_cast<const uint16_t *>(RFIFOP(fd, pos));
}
inline
uint32_t RFIFOL(int fd, size_t pos)
{
return *static_cast<const uint32_t *>(RFIFOP(fd, pos));
}
template<class T>
void RFIFO_STRUCT(int fd, size_t pos, T& structure)
{
really_memcpy(pod_addressof(structure), static_cast<const uint8_t *>(RFIFOP(fd, pos)), sizeof(T));
}
inline
void RFIFO_STRING(int fd, size_t pos, char *out, size_t len)
{
strzcpy(out, static_cast<const char *>(RFIFOP(fd, pos)), len);
}
inline
void RFIFO_BUF_CLONE(int fd, uint8_t *buf, size_t len)
{
really_memcpy(buf, static_cast<const uint8_t *>(RFIFOP(fd, 0)), len);
}
/// Done reading
void RFIFOSKIP(int fd, size_t len);
/// Read from an arbitrary buffer
inline
const void *RBUFP(const uint8_t *p, size_t pos)
{
return p + pos;
}
inline
uint8_t RBUFB(const uint8_t *p, size_t pos)
{
return *static_cast<const uint8_t *>(RBUFP(p, pos));
}
inline
uint16_t RBUFW(const uint8_t *p, size_t pos)
{
return *static_cast<const uint16_t *>(RBUFP(p, pos));
}
inline
uint32_t RBUFL(const uint8_t *p, size_t pos)
{
return *static_cast<const uint32_t *>(RBUFP(p, pos));
}
template<class T>
void RBUF_STRUCT(const uint8_t *p, size_t pos, T& structure)
{
really_memcpy(pod_addressof(structure), p + pos, sizeof(T));
}
inline
void RBUF_STRING(const uint8_t *p, size_t pos, char *out, size_t len)
{
strzcpy(out, static_cast<const char *>(RBUFP(p, pos)), len);
}
/// Unused - check how much data can be written
inline
size_t WFIFOSPACE(int fd)
{
return session[fd]->max_wdata - session[fd]->wdata_size;
}
/// Write to the queue
inline
void *WFIFOP(int fd, size_t pos)
{
return &session[fd]->wdata[session[fd]->wdata_size + pos];
}
inline
uint8_t& WFIFOB(int fd, size_t pos)
{
return *static_cast<uint8_t *>(WFIFOP(fd, pos));
}
inline
uint16_t& WFIFOW(int fd, size_t pos)
{
return *static_cast<uint16_t *>(WFIFOP(fd, pos));
}
inline
uint32_t& WFIFOL(int fd, size_t pos)
{
return *static_cast<uint32_t *>(WFIFOP(fd, pos));
}
template<class T>
void WFIFO_STRUCT(int fd, size_t pos, T& structure)
{
really_memcpy(static_cast<uint8_t *>(WFIFOP(fd, pos)), pod_addressof(structure), sizeof(T));
}
inline
void WFIFO_STRING(int fd, size_t pos, const char *s, size_t len)
{
strzcpy(static_cast<char *>(WFIFOP(fd, pos)), s, len);
}
inline
void WFIFO_ZERO(int fd, size_t pos, size_t len)
{
uint8_t *b = static_cast<uint8_t *>(WFIFOP(fd, pos));
uint8_t *e = b + len;
std::fill(b, e, '\0');
}
inline
void WFIFO_BUF_CLONE(int fd, const uint8_t *buf, size_t len)
{
really_memcpy(static_cast<uint8_t *>(WFIFOP(fd, 0)), buf, len);
}
/// Finish writing
void WFIFOSET(int fd, size_t len);
/// Write to an arbitrary buffer
inline
void *WBUFP(uint8_t *p, size_t pos)
{
return p + pos;
}
inline
uint8_t& WBUFB(uint8_t *p, size_t pos)
{
return *static_cast<uint8_t *>(WBUFP(p, pos));
}
inline
uint16_t& WBUFW(uint8_t *p, size_t pos)
{
return *static_cast<uint16_t *>(WBUFP(p, pos));
}
inline
uint32_t& WBUFL(uint8_t *p, size_t pos)
{
return *static_cast<uint32_t *>(WBUFP(p, pos));
}
template<class T>
void WBUF_STRUCT(uint8_t *p, size_t pos, T& structure)
{
really_memcpy(p + pos, pod_addressof(structure), sizeof(T));
}
inline
void WBUF_STRING(uint8_t *p, size_t pos, const char *s, size_t len)
{
strzcpy(static_cast<char *>(WBUFP(p, pos)), s, len);
}
inline
void WBUF_ZERO(uint8_t *p, size_t pos, size_t len)
{
uint8_t *b = static_cast<uint8_t *>(WBUFP(p, pos));
uint8_t *e = b + len;
std::fill(b, e, '\0');
}
inline
void RFIFO_WFIFO_CLONE(int rfd, int wfd, size_t len)
{
really_memcpy(static_cast<uint8_t *>(WFIFOP(wfd, 0)),
static_cast<const uint8_t *>(RFIFOP(rfd, 0)), len);
}
#endif // SOCKET_HPP
|