1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
// Copyright (c) Hercules Dev Team, licensed under GNU GPL.
// See the LICENSE file
// Portions Copyright (c) Athena Dev Teams
#define HERCULES_CORE
#include "../config/core.h" // CELL_NOSTACK, CIRCULAR_AREA
#include "path.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "map.h"
#include "../common/cbasetypes.h"
#include "../common/db.h"
#include "../common/malloc.h"
#include "../common/nullpo.h"
#include "../common/random.h"
#include "../common/showmsg.h"
#define SET_OPEN 0
#define SET_CLOSED 1
#define DIR_NORTH 1
#define DIR_WEST 2
#define DIR_SOUTH 4
#define DIR_EAST 8
struct path_interface path_s;
/// @name Structures and defines for A* pathfinding
/// @{
/// Path node
struct path_node {
struct path_node *parent; ///< pointer to parent (for path reconstruction)
short x; ///< X-coordinate
short y; ///< Y-coordinate
short g_cost; ///< Actual cost from start to this node
short f_cost; ///< g_cost + heuristic(this, goal)
short flag; ///< SET_OPEN / SET_CLOSED
};
/// Binary heap of path nodes
BHEAP_STRUCT_DECL(node_heap, struct path_node*);
/// Comparator for binary heap of path nodes (minimum cost at top)
#define NODE_MINTOPCMP(i,j) ((i)->f_cost - (j)->f_cost)
#define calc_index(x,y) (((x)+(y)*MAX_WALKPATH) & (MAX_WALKPATH*MAX_WALKPATH-1))
/// Estimates the cost from (x0,y0) to (x1,y1).
/// This is inadmissible (overestimating) heuristic used by game client.
#define heuristic(x0, y0, x1, y1) (MOVE_COST * (abs((x1) - (x0)) + abs((y1) - (y0)))) // Manhattan distance
/// @}
// Translates dx,dy into walking direction
static const unsigned char walk_choices [3][3] =
{
{1,0,7},
{2,-1,6},
{3,4,5},
};
/*==========================================
* Find the closest reachable cell, 'count' cells away from (x0,y0) in direction (dx,dy).
* Income after the coordinates of the blow
*------------------------------------------*/
int path_blownpos(int16 m,int16 x0,int16 y0,int16 dx,int16 dy,int count)
{
struct map_data *md;
if( !map->list[m].cell )
return -1;
md = &map->list[m];
if( count>25 ){ //Cap to prevent too much processing...?
ShowWarning("path_blownpos: count too many %d !\n",count);
count=25;
}
if( dx > 1 || dx < -1 || dy > 1 || dy < -1 ){
ShowError("path_blownpos: illegal dx=%d or dy=%d !\n",dx,dy);
dx=(dx>0)?1:((dx<0)?-1:0);
dy=(dy>0)?1:((dy<0)?-1:0);
}
while( count > 0 && (dx != 0 || dy != 0) ) {
if( !md->getcellp(md,x0+dx,y0+dy,CELL_CHKPASS) )
break;
x0 += dx;
y0 += dy;
count--;
}
return (x0<<16)|y0; //TODO: use 'struct point' here instead?
}
/*==========================================
* is ranged attack from (x0,y0) to (x1,y1) possible?
*------------------------------------------*/
bool path_search_long(struct shootpath_data *spd,int16 m,int16 x0,int16 y0,int16 x1,int16 y1,cell_chk cell)
{
int dx, dy;
int wx = 0, wy = 0;
int weight;
struct map_data *md;
struct shootpath_data s_spd;
if( spd == NULL )
spd = &s_spd; // use dummy output variable
if (!map->list[m].cell)
return false;
md = &map->list[m];
dx = (x1 - x0);
if (dx < 0) {
swap(x0, x1);
swap(y0, y1);
dx = -dx;
}
dy = (y1 - y0);
spd->rx = spd->ry = 0;
spd->len = 1;
spd->x[0] = x0;
spd->y[0] = y0;
if (md->getcellp(md,x1,y1,cell))
return false;
if (dx > abs(dy)) {
weight = dx;
spd->ry = 1;
} else {
weight = abs(y1 - y0);
spd->rx = 1;
}
while (x0 != x1 || y0 != y1)
{
if (md->getcellp(md,x0,y0,cell))
return false;
wx += dx;
wy += dy;
if (wx >= weight) {
wx -= weight;
x0++;
}
if (wy >= weight) {
wy -= weight;
y0++;
} else if (wy < 0) {
wy += weight;
y0--;
}
if( spd->len<MAX_WALKPATH )
{
spd->x[spd->len] = x0;
spd->y[spd->len] = y0;
spd->len++;
}
}
return true;
}
/// @name A* pathfinding related functions
/// @{
/// Pushes path_node to the binary node_heap.
/// Ensures there is enough space in array to store new element.
static void heap_push_node(struct node_heap *heap, struct path_node *node)
{
#ifndef __clang_analyzer__ // TODO: Figure out why clang's static analyzer doesn't like this
BHEAP_ENSURE(*heap, 1, 256);
BHEAP_PUSH2(*heap, node, NODE_MINTOPCMP, swap_ptr);
#endif // __clang_analyzer__
}
/// Updates path_node in the binary node_heap.
static int heap_update_node(struct node_heap *heap, struct path_node *node)
{
int i;
ARR_FIND(0, BHEAP_LENGTH(*heap), i, BHEAP_DATA(*heap)[i] == node);
if (i == BHEAP_LENGTH(*heap)) {
ShowError("heap_update_node: node not found\n");
return 1;
}
BHEAP_UPDATE(*heap, i, NODE_MINTOPCMP, swap_ptr);
return 0;
}
/// Path_node processing in A* pathfinding.
/// Adds new node to heap and updates/re-adds old ones if necessary.
static int add_path(struct node_heap *heap, struct path_node *tp, int16 x, int16 y, int g_cost, struct path_node *parent, int h_cost)
{
int i = calc_index(x, y);
if (tp[i].x == x && tp[i].y == y) { // We processed this node before
if (g_cost < tp[i].g_cost) { // New path to this node is better than old one
// Update costs and parent
tp[i].g_cost = g_cost;
tp[i].parent = parent;
tp[i].f_cost = g_cost + h_cost;
if (tp[i].flag == SET_CLOSED) {
heap_push_node(heap, &tp[i]); // Put it in open set again
}
else if (heap_update_node(heap, &tp[i])) {
return 1;
}
tp[i].flag = SET_OPEN;
}
return 0;
}
if (tp[i].x || tp[i].y) // Index is already taken; see `tp` array FIXME for details
return 1;
// New node
tp[i].x = x;
tp[i].y = y;
tp[i].g_cost = g_cost;
tp[i].parent = parent;
tp[i].f_cost = g_cost + h_cost;
tp[i].flag = SET_OPEN;
heap_push_node(heap, &tp[i]);
return 0;
}
///@}
/*==========================================
* path search (x0,y0)->(x1,y1)
* wpd: path info will be written here
* flag: &1 = easy path search only
* cell: type of obstruction to check for
*------------------------------------------*/
bool path_search(struct walkpath_data *wpd, int16 m, int16 x0, int16 y0, int16 x1, int16 y1, int flag, cell_chk cell)
{
register int i, j, x, y, dx, dy;
struct map_data *md;
struct walkpath_data s_wpd;
if (wpd == NULL)
wpd = &s_wpd; // use dummy output variable
if (!map->list[m].cell)
return false;
md = &map->list[m];
#ifdef CELL_NOSTACK
//Do not check starting cell as that would get you stuck.
if (x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys)
#else
if (x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys /*|| md->getcellp(md,x0,y0,cell)*/)
#endif
return false;
// Check destination cell
if (x1 < 0 || x1 >= md->xs || y1 < 0 || y1 >= md->ys || md->getcellp(md,x1,y1,cell))
return false;
if (flag&1) {
// Try finding direct path to target
// Direct path goes diagonally first, then in straight line.
// calculate (sgn(x1-x0), sgn(y1-y0))
dx = ((dx = x1-x0)) ? ((dx<0) ? -1 : 1) : 0;
dy = ((dy = y1-y0)) ? ((dy<0) ? -1 : 1) : 0;
x = x0; // Current position = starting cell
y = y0;
i = 0;
while( i < ARRAYLENGTH(wpd->path) )
{
wpd->path[i] = walk_choices[-dy + 1][dx + 1];
i++;
x += dx; // Advance current position
y += dy;
if( x == x1 ) dx = 0; // destination x reached, no longer move along x-axis
if( y == y1 ) dy = 0; // destination y reached, no longer move along y-axis
if( dx == 0 && dy == 0 )
break; // success
if( md->getcellp(md,x,y,cell) )
break; // obstacle = failure
}
if( x == x1 && y == y1 )
{ // easy path successful.
wpd->path_len = i;
wpd->path_pos = 0;
return true;
}
return false; // easy path unsuccessful
}
else { // !(flag&1)
// A* (A-star) pathfinding
// We always use A* for finding walkpaths because it is what game client uses.
// Easy pathfinding cuts corners of non-walkable cells, but client always walks around it.
BHEAP_STRUCT_VAR(node_heap, open_set); // 'Open' set
// FIXME: This array is too small to ensure all paths shorter than MAX_WALKPATH
// can be found without node collision: calc_index(node1) = calc_index(node2).
// Figure out more proper size or another way to keep track of known nodes.
struct path_node tp[MAX_WALKPATH * MAX_WALKPATH];
struct path_node *current, *it;
int xs = md->xs - 1;
int ys = md->ys - 1;
int len = 0;
memset(tp, 0, sizeof(tp));
// Start node
i = calc_index(x0, y0);
tp[i].parent = NULL;
tp[i].x = x0;
tp[i].y = y0;
tp[i].g_cost = 0;
tp[i].f_cost = heuristic(x0, y0, x1, y1);
tp[i].flag = SET_OPEN;
heap_push_node(&open_set, &tp[i]); // Put start node to 'open' set
for(;;) {
int e = 0; // error flag
// Saves allowed directions for the current cell. Diagonal directions
// are only allowed if both directions around it are allowed. This is
// to prevent cutting corner of nearby wall.
// For example, you can only go NW from the current cell, if you can
// go N *and* you can go W. Otherwise you need to walk around the
// (corner of the) non-walkable cell.
int allowed_dirs = 0;
int g_cost;
if (BHEAP_LENGTH(open_set) == 0) {
BHEAP_CLEAR(open_set);
return false;
}
current = BHEAP_PEEK(open_set); // Look for the lowest f_cost node in the 'open' set
BHEAP_POP2(open_set, NODE_MINTOPCMP, swap_ptr); // Remove it from 'open' set
x = current->x;
y = current->y;
g_cost = current->g_cost;
current->flag = SET_CLOSED; // Add current node to 'closed' set
if (x == x1 && y == y1) {
BHEAP_CLEAR(open_set);
break;
}
if (y < ys && !md->getcellp(md, x, y+1, cell)) allowed_dirs |= DIR_NORTH;
if (y > 0 && !md->getcellp(md, x, y-1, cell)) allowed_dirs |= DIR_SOUTH;
if (x < xs && !md->getcellp(md, x+1, y, cell)) allowed_dirs |= DIR_EAST;
if (x > 0 && !md->getcellp(md, x-1, y, cell)) allowed_dirs |= DIR_WEST;
#define chk_dir(d) ((allowed_dirs & (d)) == (d))
// Process neighbors of current node
if (chk_dir(DIR_SOUTH|DIR_EAST) && !md->getcellp(md, x+1, y-1, cell))
e += add_path(&open_set, tp, x+1, y-1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x+1, y-1, x1, y1)); // (x+1, y-1) 5
if (chk_dir(DIR_EAST))
e += add_path(&open_set, tp, x+1, y, g_cost + MOVE_COST, current, heuristic(x+1, y, x1, y1)); // (x+1, y) 6
if (chk_dir(DIR_NORTH|DIR_EAST) && !md->getcellp(md, x+1, y+1, cell))
e += add_path(&open_set, tp, x+1, y+1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x+1, y+1, x1, y1)); // (x+1, y+1) 7
if (chk_dir(DIR_NORTH))
e += add_path(&open_set, tp, x, y+1, g_cost + MOVE_COST, current, heuristic(x, y+1, x1, y1)); // (x, y+1) 0
if (chk_dir(DIR_NORTH|DIR_WEST) && !md->getcellp(md, x-1, y+1, cell))
e += add_path(&open_set, tp, x-1, y+1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x-1, y+1, x1, y1)); // (x-1, y+1) 1
if (chk_dir(DIR_WEST))
e += add_path(&open_set, tp, x-1, y, g_cost + MOVE_COST, current, heuristic(x-1, y, x1, y1)); // (x-1, y) 2
if (chk_dir(DIR_SOUTH|DIR_WEST) && !md->getcellp(md, x-1, y-1, cell))
e += add_path(&open_set, tp, x-1, y-1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x-1, y-1, x1, y1)); // (x-1, y-1) 3
if (chk_dir(DIR_SOUTH))
e += add_path(&open_set, tp, x, y-1, g_cost + MOVE_COST, current, heuristic(x, y-1, x1, y1)); // (x, y-1) 4
#undef chk_dir
if (e) {
BHEAP_CLEAR(open_set);
return false;
}
}
for (it = current; it->parent != NULL; it = it->parent, len++);
if (len > sizeof(wpd->path)) {
return false;
}
// Recreate path
wpd->path_len = len;
wpd->path_pos = 0;
for (it = current, j = len-1; j >= 0; it = it->parent, j--) {
dx = it->x - it->parent->x;
dy = it->y - it->parent->y;
wpd->path[j] = walk_choices[-dy + 1][dx + 1];
}
return true;
} // A* end
return false;
}
//Distance functions, taken from http://www.flipcode.com/articles/article_fastdistance.shtml
int check_distance(int dx, int dy, int distance)
{
#ifdef CIRCULAR_AREA
//In this case, we just do a square comparison. Add 1 tile grace for diagonal range checks.
return (dx*dx + dy*dy <= distance*distance + (dx&&dy?1:0));
#else
if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
return ((dx<dy?dy:dx) <= distance);
#endif
}
unsigned int distance(int dx, int dy)
{
#ifdef CIRCULAR_AREA
unsigned int min, max;
if ( dx < 0 ) dx = -dx;
if ( dy < 0 ) dy = -dy;
//There appears to be something wrong with the approximation below when either dx/dy is 0! [Skotlex]
if ( dx == 0 ) return dy;
if ( dy == 0 ) return dx;
if ( dx < dy )
{
min = dx;
max = dy;
} else {
min = dy;
max = dx;
}
// coefficients equivalent to ( 123/128 * max ) and ( 51/128 * min )
return ((( max << 8 ) + ( max << 3 ) - ( max << 4 ) - ( max << 1 ) +
( min << 7 ) - ( min << 5 ) + ( min << 3 ) - ( min << 1 )) >> 8 );
#else
if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
return (dx<dy?dy:dx);
#endif
}
void path_defaults(void) {
path = &path_s;
path->blownpos = path_blownpos;
path->search_long = path_search_long;
path->search = path_search;
path->check_distance = check_distance;
path->distance = distance;
}
|