1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
// Copyright (c) rAthena Project (www.rathena.org) - Licensed under GNU GPL
// For more information, see LICENCE in the main folder
#define HERCULES_CORE
#include "mutex.h"
#include "common/cbasetypes.h" // for WIN32
#include "common/malloc.h"
#include "common/showmsg.h"
#include "common/timer.h"
#ifdef WIN32
#include "common/winapi.h"
#else
#include <pthread.h>
#include <sys/time.h>
#endif
struct ramutex{
#ifdef WIN32
CRITICAL_SECTION hMutex;
#else
pthread_mutex_t hMutex;
#endif
};
struct racond{
#ifdef WIN32
HANDLE events[2];
ra_align(8) volatile LONG nWaiters;
CRITICAL_SECTION waiters_lock;
#define EVENT_COND_SIGNAL 0
#define EVENT_COND_BROADCAST 1
#else
pthread_cond_t hCond;
#endif
};
////////////////////
// Mutex
//
// Implementation:
//
ramutex *ramutex_create(void) {
struct ramutex *m;
m = (struct ramutex*)aMalloc( sizeof(struct ramutex) );
if (m == NULL) {
ShowFatalError("ramutex_create: OOM while allocating %"PRIuS" bytes.\n", sizeof(struct ramutex));
return NULL;
}
#ifdef WIN32
InitializeCriticalSection(&m->hMutex);
#else
pthread_mutex_init(&m->hMutex, NULL);
#endif
return m;
}//end: ramutex_create()
void ramutex_destroy(ramutex *m) {
#ifdef WIN32
DeleteCriticalSection(&m->hMutex);
#else
pthread_mutex_destroy(&m->hMutex);
#endif
aFree(m);
}//end: ramutex_destroy()
void ramutex_lock(ramutex *m) {
#ifdef WIN32
EnterCriticalSection(&m->hMutex);
#else
pthread_mutex_lock(&m->hMutex);
#endif
}//end: ramutex_lock
bool ramutex_trylock(ramutex *m) {
#ifdef WIN32
if(TryEnterCriticalSection(&m->hMutex) != FALSE)
return true;
return false;
#else
if(pthread_mutex_trylock(&m->hMutex) == 0)
return true;
return false;
#endif
}//end: ramutex_trylock()
void ramutex_unlock(ramutex *m) {
#ifdef WIN32
LeaveCriticalSection(&m->hMutex);
#else
pthread_mutex_unlock(&m->hMutex);
#endif
}//end: ramutex_unlock()
///////////////
// Condition Variables
//
// Implementation:
//
racond *racond_create(void) {
struct racond *c;
c = (struct racond*)aMalloc( sizeof(struct racond) );
if (c == NULL) {
ShowFatalError("racond_create: OOM while allocating %"PRIuS" bytes\n", sizeof(struct racond));
return NULL;
}
#ifdef WIN32
c->nWaiters = 0;
c->events[EVENT_COND_SIGNAL] = CreateEvent(NULL, FALSE, FALSE, NULL);
c->events[EVENT_COND_BROADCAST] = CreateEvent(NULL, TRUE, FALSE, NULL);
InitializeCriticalSection( &c->waiters_lock );
#else
pthread_cond_init(&c->hCond, NULL);
#endif
return c;
}//end: racond_create()
void racond_destroy(racond *c) {
#ifdef WIN32
CloseHandle( c->events[ EVENT_COND_SIGNAL ] );
CloseHandle( c->events[ EVENT_COND_BROADCAST ] );
DeleteCriticalSection( &c->waiters_lock );
#else
pthread_cond_destroy(&c->hCond);
#endif
aFree(c);
}//end: racond_destroy()
void racond_wait(racond *c, ramutex *m, sysint timeout_ticks) {
#ifdef WIN32
register DWORD ms;
int result;
bool is_last = false;
EnterCriticalSection(&c->waiters_lock);
c->nWaiters++;
LeaveCriticalSection(&c->waiters_lock);
if(timeout_ticks < 0)
ms = INFINITE;
else
ms = (timeout_ticks > MAXDWORD) ? (MAXDWORD - 1) : (DWORD)timeout_ticks;
// we can release the mutex (m) here, cause win's
// manual reset events maintain state when used with
// SetEvent()
ramutex_unlock(m);
result = WaitForMultipleObjects(2, c->events, FALSE, ms);
EnterCriticalSection(&c->waiters_lock);
c->nWaiters--;
if( (result == WAIT_OBJECT_0 + EVENT_COND_BROADCAST) && (c->nWaiters == 0) )
is_last = true; // Broadcast called!
LeaveCriticalSection(&c->waiters_lock);
// we are the last waiter that has to be notified, or to stop waiting
// so we have to do a manual reset
if(is_last == true)
ResetEvent( c->events[EVENT_COND_BROADCAST] );
ramutex_lock(m);
#else
if(timeout_ticks < 0){
pthread_cond_wait( &c->hCond, &m->hMutex );
}else{
struct timespec wtime;
int64 exact_timeout = timer->gettick() + timeout_ticks;
wtime.tv_sec = exact_timeout/1000;
wtime.tv_nsec = (exact_timeout%1000)*1000000;
pthread_cond_timedwait( &c->hCond, &m->hMutex, &wtime);
}
#endif
}//end: racond_wait()
void racond_signal(racond *c) {
#ifdef WIN32
# if 0
bool has_waiters = false;
EnterCriticalSection(&c->waiters_lock);
if(c->nWaiters > 0)
has_waiters = true;
LeaveCriticalSection(&c->waiters_lock);
if(has_waiters == true)
# endif // 0
SetEvent( c->events[ EVENT_COND_SIGNAL ] );
#else
pthread_cond_signal(&c->hCond);
#endif
}//end: racond_signal()
void racond_broadcast(racond *c) {
#ifdef WIN32
# if 0
bool has_waiters = false;
EnterCriticalSection(&c->waiters_lock);
if(c->nWaiters > 0)
has_waiters = true;
LeaveCriticalSection(&c->waiters_lock);
if(has_waiters == true)
# endif // 0
SetEvent( c->events[ EVENT_COND_BROADCAST ] );
#else
pthread_cond_broadcast(&c->hCond);
#endif
}//end: racond_broadcast()
|