// Copyright (c) Athena Dev Teams - Licensed under GNU GPL
// For more information, see LICENCE in the main folder
#include "../common/cbasetypes.h"
#include "../common/nullpo.h"
#include "../common/showmsg.h"
#include "../common/malloc.h"
#include "map.h"
#include "battle.h"
#include "path.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_HEAP 150
struct tmp_path { short x,y,dist,before,cost,flag;};
#define calc_index(x,y) (((x)+(y)*MAX_WALKPATH) & (MAX_WALKPATH*MAX_WALKPATH-1))
const char walk_choices [3][3] =
{
{1,0,7},
{2,-1,6},
{3,4,5},
};
/*==========================================
* heap push (helper function)
*------------------------------------------*/
static void push_heap_path(int *heap,struct tmp_path *tp,int index)
{
int i,h;
h = heap[0];
heap[0]++;
for( i = (h-1)/2; h > 0 && tp[index].cost < tp[heap[i+1]].cost; i = (h-1)/2 )
heap[h+1] = heap[i+1], h = i;
heap[h+1] = index;
}
/*==========================================
* heap update (helper function)
* cost���������̂ō��̕��ֈړ�
*------------------------------------------*/
static void update_heap_path(int *heap,struct tmp_path *tp,int index)
{
int i,h;
ARR_FIND( 0, heap[0], h, heap[h+1] == index );
if( h == heap[0] )
{
ShowError("update_heap_path bug\n");
exit(EXIT_FAILURE);
}
for( i = (h-1)/2; h > 0 && tp[index].cost < tp[heap[i+1]].cost; i = (h-1)/2 )
heap[h+1] = heap[i+1], h = i;
heap[h+1] = index;
}
/*==========================================
* heap pop (helper function)
*------------------------------------------*/
static int pop_heap_path(int *heap,struct tmp_path *tp)
{
int i,h,k;
int ret,last;
if( heap[0] <= 0 )
return -1;
ret = heap[1];
last = heap[heap[0]];
heap[0]--;
for( h = 0, k = 2; k < heap[0]; k = k*2+2 )
{
if( tp[heap[k+1]].cost > tp[heap[k]].cost )
k--;
heap[h+1] = heap[k+1], h = k;
}
if( k == heap[0] )
heap[h+1] = heap[k], h = k-1;
for( i = (h-1)/2; h > 0 && tp[heap[i+1]].cost > tp[last].cost; i = (h-1)/2 )
heap[h+1] = heap[i+1], h = i;
heap[h+1]=last;
return ret;
}
/*==========================================
* calculate cost for the specified position
*------------------------------------------*/
static int calc_cost(struct tmp_path *p,int x1,int y1)
{
int xd = abs(x1 - p->x);
int yd = abs(y1 - p->y);
return (xd + yd)*10 + p->dist;
}
/*==========================================
* attach/adjust path if neccessary
*------------------------------------------*/
static int add_path(int *heap,struct tmp_path *tp,int x,int y,int dist,int before,int cost)
{
int i;
i = calc_index(x,y);
if( tp[i].x == x && tp[i].y == y )
{
if( tp[i].dist > dist )
{
tp[i].dist = dist;
tp[i].before = before;
tp[i].cost = cost;
if( tp[i].flag )
push_heap_path(heap,tp,i);
else
update_heap_path(heap,tp,i);
tp[i].flag = 0;
}
return 0;
}
if( tp[i].x || tp[i].y )
return 1;
tp[i].x = x;
tp[i].y = y;
tp[i].dist = dist;
tp[i].before = before;
tp[i].cost = cost;
tp[i].flag = 0;
push_heap_path(heap,tp,i);
return 0;
}
/*==========================================
* Find the closest reachable cell, 'count' cells away from (x0,y0) in direction (dx,dy).
*
* ������������Ƃ̍��W������
*------------------------------------------*/
int path_blownpos(int m,int x0,int y0,int dx,int dy,int count)
{
struct map_data *md;
if( !map[m].cell )
return -1;
md = &map[m];
if( count>25 ){ //Cap to prevent too much processing...?
ShowWarning("path_blownpos: count too many %d !\n",count);
count=25;
}
if( dx > 1 || dx < -1 || dy > 1 || dy < -1 ){
ShowError("path_blownpos: illegal dx=%d or dy=%d !\n",dx,dy);
dx=(dx>0)?1:((dx<0)?-1:0);
dy=(dy>0)?1:((dy<0)?-1:0);
}
while( count > 0 && (dx != 0 || dy != 0) )
{
if( !map_getcellp(md,x0+dx,y0+dy,CELL_CHKPASS) )
{// attempt partial movement
int fx = ( dx != 0 && map_getcellp(md,x0+dx,y0,CELL_CHKPASS) );
int fy = ( dy != 0 && map_getcellp(md,x0,y0+dy,CELL_CHKPASS) );
if( fx && fy )
{
if(rand()&1)
dx=0;
else
dy=0;
}
if( !fx )
dx=0;
if( !fy )
dy=0;
}
x0 += dx;
y0 += dy;
count--;
}
return (x0<<16)|y0; //TODO: use 'struct point' here instead?
}
/*==========================================
* is ranged attack from (x0,y0) to (x1,y1) possible?
*------------------------------------------*/
bool path_search_long(struct shootpath_data *spd,int m,int x0,int y0,int x1,int y1,cell_chk cell)
{
int dx, dy;
int wx = 0, wy = 0;
int weight;
struct map_data *md;
struct shootpath_data s_spd;
if( spd == NULL )
spd = &s_spd; // use dummy output variable
if (!map[m].cell)
return false;
md = &map[m];
dx = (x1 - x0);
if (dx < 0) {
swap(x0, x1);
swap(y0, y1);
dx = -dx;
}
dy = (y1 - y0);
spd->rx = spd->ry = 0;
spd->len = 1;
spd->x[0] = x0;
spd->y[0] = y0;
if (map_getcellp(md,x1,y1,cell))
return false;
if (dx > abs(dy)) {
weight = dx;
spd->ry = 1;
} else {
weight = abs(y1 - y0);
spd->rx = 1;
}
while (x0 != x1 || y0 != y1)
{
if (map_getcellp(md,x0,y0,cell))
return false;
wx += dx;
wy += dy;
if (wx >= weight) {
wx -= weight;
x0++;
}
if (wy >= weight) {
wy -= weight;
y0++;
} else if (wy < 0) {
wy += weight;
y0--;
}
if( spd->len<MAX_WALKPATH )
{
spd->x[spd->len] = x0;
spd->y[spd->len] = y0;
spd->len++;
}
}
return true;
}
/*==========================================
* path search (x0,y0)->(x1,y1)
* wpd: path info will be written here
* flag: &1 = easy path search only
* cell: type of obstruction to check for
*------------------------------------------*/
bool path_search(struct walkpath_data *wpd,int m,int x0,int y0,int x1,int y1,int flag,cell_chk cell)
{
int heap[MAX_HEAP+1];
struct tmp_path tp[MAX_WALKPATH*MAX_WALKPATH];
register int i,j,len,x,y,dx,dy;
int rp,xs,ys;
struct map_data *md;
struct walkpath_data s_wpd;
if( wpd == NULL )
wpd = &s_wpd; // use dummy output variable
if( !map[m].cell )
return false;
md = &map[m];
#ifdef CELL_NOSTACK
//Do not check starting cell as that would get you stuck.
if( x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys )
#else
if( x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys /*|| map_getcellp(md,x0,y0,cell)*/ )
#endif
return false;
if( x1 < 0 || x1 >= md->xs || y1 < 0 || y1 >= md->ys || map_getcellp(md,x1,y1,cell) )
return false;
// calculate (sgn(x1-x0), sgn(y1-y0))
dx = ((dx = x1-x0)) ? ((dx<0) ? -1 : 1) : 0;
dy = ((dy = y1-y0)) ? ((dy<0) ? -1 : 1) : 0;
// try finding direct path to target
x = x0;
y = y0;
i = 0;
while( i < ARRAYLENGTH(wpd->path) )
{
wpd->path[i] = walk_choices[-dy + 1][dx + 1];
i++;
x += dx;
y += dy;
if( x == x1 ) dx = 0;
if( y == y1 ) dy = 0;
if( dx == 0 && dy == 0 )
break; // success
if( map_getcellp(md,x,y,cell) )
break; // obstacle = failure
}
if( x == x1 && y == y1 )
{ //easy path successful.
wpd->path_len = i;
wpd->path_pos = 0;
return true;
}
if( flag&1 )
return false;
memset(tp,0,sizeof(tp));
i=calc_index(x0,y0);
tp[i].x=x0;
tp[i].y=y0;
tp[i].dist=0;
tp[i].before=0;
tp[i].cost=calc_cost(&tp[i],x1,y1);
tp[i].flag=0;
heap[0]=0;
push_heap_path(heap,tp,calc_index(x0,y0));
xs = md->xs-1; // ���炩���߂P���Z���Ă���
ys = md->ys-1;
while(1)
{
int e=0,f=0,dist,cost,dc[4]={0,0,0,0};
if(heap[0]==0)
return false;
rp = pop_heap_path(heap,tp);
x = tp[rp].x;
y = tp[rp].y;
dist = tp[rp].dist + 10;
cost = tp[rp].cost;
if(x==x1 && y==y1)
break;
// dc[0] : y++ �̎��̃R�X�g����
// dc[1] : x-- �̎��̃R�X�g����
// dc[2] : y-- �̎��̃R�X�g����
// dc[3] : x++ �̎��̃R�X�g����
if(y < ys && !map_getcellp(md,x ,y+1,cell)) {
f |= 1; dc[0] = (y >= y1 ? 20 : 0);
e+=add_path(heap,tp,x ,y+1,dist,rp,cost+dc[0]); // (x, y+1)
}
if(x > 0 && !map_getcellp(md,x-1,y ,cell)) {
f |= 2; dc[1] = (x <= x1 ? 20 : 0);
e+=add_path(heap,tp,x-1,y ,dist,rp,cost+dc[1]); // (x-1, y )
}
if(y > 0 && !map_getcellp(md,x ,y-1,cell)) {
f |= 4; dc[2] = (y <= y1 ? 20 : 0);
e+=add_path(heap,tp,x ,y-1,dist,rp,cost+dc[2]); // (x , y-1)
}
if(x < xs && !map_getcellp(md,x+1,y ,cell)) {
f |= 8; dc[3] = (x >= x1 ? 20 : 0);
e+=add_path(heap,tp,x+1,y ,dist,rp,cost+dc[3]); // (x+1, y )
}
if( (f & (2+1)) == (2+1) && !map_getcellp(md,x-1,y+1,cell))
e+=add_path(heap,tp,x-1,y+1,dist+4,rp,cost+dc[1]+dc[0]-6); // (x-1, y+1)
if( (f & (2+4)) == (2+4) && !map_getcellp(md,x-1,y-1,cell))
e+=add_path(heap,tp,x-1,y-1,dist+4,rp,cost+dc[1]+dc[2]-6); // (x-1, y-1)
if( (f & (8+4)) == (8+4) && !map_getcellp(md,x+1,y-1,cell))
e+=add_path(heap,tp,x+1,y-1,dist+4,rp,cost+dc[3]+dc[2]-6); // (x+1, y-1)
if( (f & (8+1)) == (8+1) && !map_getcellp(md,x+1,y+1,cell))
e+=add_path(heap,tp,x+1,y+1,dist+4,rp,cost+dc[3]+dc[0]-6); // (x+1, y+1)
tp[rp].flag=1;
if(e || heap[0]>=MAX_HEAP-5)
return false;
}
if( !(x==x1 && y==y1) ) // will never happen...
return false;
for(len=0,i=rp;len<100 && i!=calc_index(x0,y0);i=tp[i].before,len++);
if(len==100 || len>=sizeof(wpd->path))
return false;
wpd->path_len = len;
wpd->path_pos = 0;
for(i=rp,j=len-1;j>=0;i=tp[i].before,j--) {
int dx = tp[i].x - tp[tp[i].before].x;
int dy = tp[i].y - tp[tp[i].before].y;
int dir;
if( dx == 0 ) {
dir = (dy > 0 ? 0 : 4);
} else if( dx > 0 ) {
dir = (dy == 0 ? 6 : (dy < 0 ? 5 : 7) );
} else {
dir = (dy == 0 ? 2 : (dy > 0 ? 1 : 3) );
}
wpd->path[j] = dir;
}
return true;
}
//Distance functions, taken from http://www.flipcode.com/articles/article_fastdistance.shtml
int check_distance(int dx, int dy, int distance)
{
#ifdef CIRCULAR_AREA
//In this case, we just do a square comparison. Add 1 tile grace for diagonal range checks.
return (dx*dx + dy*dy <= distance*distance + (dx&&dy?1:0));
#else
if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
return ((dx<dy?dy:dx) <= distance);
#endif
}
unsigned int distance(int dx, int dy)
{
#ifdef CIRCULAR_AREA
unsigned int min, max;
if ( dx < 0 ) dx = -dx;
if ( dy < 0 ) dy = -dy;
//There appears to be something wrong with the aproximation below when either dx/dy is 0! [Skotlex]
if ( dx == 0 ) return dy;
if ( dy == 0 ) return dx;
if ( dx < dy )
{
min = dx;
max = dy;
} else {
min = dy;
max = dx;
}
// coefficients equivalent to ( 123/128 * max ) and ( 51/128 * min )
return ((( max << 8 ) + ( max << 3 ) - ( max << 4 ) - ( max << 1 ) +
( min << 7 ) - ( min << 5 ) + ( min << 3 ) - ( min << 1 )) >> 8 );
#else
if (dx < 0) dx = -dx;
if (dy < 0) dy = -dy;
return (dx<dy?dy:dx);
#endif
}