summaryrefslogtreecommitdiff
path: root/src/utils/sha2.cpp
blob: b2bf9c1efd63df51084b1a631736a77cb04b1185 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/*************************************************************

    This program is a C++ implementation of the Secure Hash Algorithm (SHA)
    that handles the variations from the original 160 bit to 224, 256, 384
    and 512 bit.  The program is intended to be platform independant and
    has been tested on little-endian (Intel) and big-endian (Sun) machines.

    This program is based on a C version written by Aaron D. Gifford
    (as of 11/22/2004 his code could be found at http://www.adg.us/computers/sha.html).
    Attempts to contact him were unsuccessful.  I greatly condensed his version
    and shared as much code and data as I could think of.  I also inlined
    a lot of code that were macros in his version.  My version detects
    endian-ness automatically and adjusts itself accordingly.  This program
    has been tested with Visual C++ versions 6/7 and Dev-C++ on Windows, 
    g++ on Linux and CC on Solaris (g++ on Solaris gave a bus error).

    While I did make half-hearted attempts to optimize as I went along
    (testing on Wintel), any serious attempt at fast implementation is
    probably going to need to make use of in-lined assembly which is not
    very portable.

    The goal of this implementation is ease of use.  As much as possible
    I tried to hide implementation details while making it trivial to change
    the size of the hash and get the results.  The string and charactar
    array value of the hash is supplied as human-readable hex; the raw value
    can also be obtained.

    If you use this implementation somewhere I would like to be credited
    with my work (a link to my page below is fine).  I add no license
    restriction beyond any that is made by the original author.  This
    code comes with no warrenty expressed or implied, use at your own
    risk!

    Keith Oxenrider
    koxenrider[at]sol[dash]biotech[dot]com
    The latest version of this code should be available via the page
    sol-biotech.com/code.

*************************************************************/

#include "sha2.h"

#include <iostream>

using namespace std;

// Hash constant words K for SHA-1:
const sha_word32 K1_0_TO_19  = 0x5a827999UL;
const sha_word32 K1_20_TO_39 = 0x6ed9eba1UL;
const sha_word32 K1_40_TO_59 = 0x8f1bbcdcUL;
const sha_word32 K1_60_TO_79 = 0xca62c1d6UL;



//** SHA2 INITIAL HASH VALUES AND CONSTANTS **************************

// Initial hash value H for SHA-1: 
const static sha_word32 sha1_initial_hash_value[5] = {
    0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL,
    0xc3d2e1f0UL
};

// Hash constant words K for SHA-224 and SHA-256: 
const static sha_word32 K256[64] = {
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};

// Initial hash value H for SHA-224: 
const static sha_word32 sha224_initial_hash_value[8] = {
    0xc1059ed8UL, 0x367cd507UL, 0x3070dd17UL, 0xf70e5939UL,
    0xffc00b31UL, 0x68581511UL, 0x64f98fa7UL, 0xbefa4fa4UL
};

// Initial hash value H for SHA-256: 
const static sha_word32 sha256_initial_hash_value[8] = {
    0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL,
    0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL
};

// ui64 Hash constant words K for SHA-384 and SHA-512: 
#ifdef _VC6
    const static sha_word64 K512[80] = {
        0x428a2f98d728ae22ui64, 0x7137449123ef65cdui64,
        0xb5c0fbcfec4d3b2fui64, 0xe9b5dba58189dbbcui64,
        0x3956c25bf348b538ui64, 0x59f111f1b605d019ui64,
        0x923f82a4af194f9bui64, 0xab1c5ed5da6d8118ui64,
        0xd807aa98a3030242ui64, 0x12835b0145706fbeui64,
        0x243185be4ee4b28cui64, 0x550c7dc3d5ffb4e2ui64,
        0x72be5d74f27b896fui64, 0x80deb1fe3b1696b1ui64,
        0x9bdc06a725c71235ui64, 0xc19bf174cf692694ui64,
        0xe49b69c19ef14ad2ui64, 0xefbe4786384f25e3ui64,
        0x0fc19dc68b8cd5b5ui64, 0x240ca1cc77ac9c65ui64,
        0x2de92c6f592b0275ui64, 0x4a7484aa6ea6e483ui64,
        0x5cb0a9dcbd41fbd4ui64, 0x76f988da831153b5ui64,
        0x983e5152ee66dfabui64, 0xa831c66d2db43210ui64,
        0xb00327c898fb213fui64, 0xbf597fc7beef0ee4ui64,
        0xc6e00bf33da88fc2ui64, 0xd5a79147930aa725ui64,
        0x06ca6351e003826fui64, 0x142929670a0e6e70ui64,
        0x27b70a8546d22ffcui64, 0x2e1b21385c26c926ui64,
        0x4d2c6dfc5ac42aedui64, 0x53380d139d95b3dfui64,
        0x650a73548baf63deui64, 0x766a0abb3c77b2a8ui64,
        0x81c2c92e47edaee6ui64, 0x92722c851482353bui64,
        0xa2bfe8a14cf10364ui64, 0xa81a664bbc423001ui64,
        0xc24b8b70d0f89791ui64, 0xc76c51a30654be30ui64,
        0xd192e819d6ef5218ui64, 0xd69906245565a910ui64,
        0xf40e35855771202aui64, 0x106aa07032bbd1b8ui64,
        0x19a4c116b8d2d0c8ui64, 0x1e376c085141ab53ui64,
        0x2748774cdf8eeb99ui64, 0x34b0bcb5e19b48a8ui64,
        0x391c0cb3c5c95a63ui64, 0x4ed8aa4ae3418acbui64,
        0x5b9cca4f7763e373ui64, 0x682e6ff3d6b2b8a3ui64,
        0x748f82ee5defb2fcui64, 0x78a5636f43172f60ui64,
        0x84c87814a1f0ab72ui64, 0x8cc702081a6439ecui64,
        0x90befffa23631e28ui64, 0xa4506cebde82bde9ui64,
        0xbef9a3f7b2c67915ui64, 0xc67178f2e372532bui64,
        0xca273eceea26619cui64, 0xd186b8c721c0c207ui64,
        0xeada7dd6cde0eb1eui64, 0xf57d4f7fee6ed178ui64,
        0x06f067aa72176fbaui64, 0x0a637dc5a2c898a6ui64,
        0x113f9804bef90daeui64, 0x1b710b35131c471bui64,
        0x28db77f523047d84ui64, 0x32caab7b40c72493ui64,
        0x3c9ebe0a15c9bebcui64, 0x431d67c49c100d4cui64,
        0x4cc5d4becb3e42b6ui64, 0x597f299cfc657e2aui64,
        0x5fcb6fab3ad6faecui64, 0x6c44198c4a475817ui64
    };
    // Initial hash value H for SHA-384 
    const static sha_word64 sha384_initial_hash_value[8] = {
        0xcbbb9d5dc1059ed8ui64, 0x629a292a367cd507ui64,
        0x9159015a3070dd17ui64, 0x152fecd8f70e5939ui64,
        0x67332667ffc00b31ui64, 0x8eb44a8768581511ui64,
        0xdb0c2e0d64f98fa7ui64, 0x47b5481dbefa4fa4ui64
    };

    // Initial hash value H for SHA-512 
    const static sha_word64 sha512_initial_hash_value[8] = {
        0x6a09e667f3bcc908ui64, 0xbb67ae8584caa73bui64,
        0x3c6ef372fe94f82bui64, 0xa54ff53a5f1d36f1ui64,
        0x510e527fade682d1ui64, 0x9b05688c2b3e6c1fui64,
        0x1f83d9abfb41bd6bui64, 0x5be0cd19137e2179ui64
    };
#else
    const static sha_word64 K512[80] = {
        0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
        0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
        0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
        0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
        0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
        0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
        0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
        0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
        0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
        0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
        0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
        0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
        0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
        0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
        0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
        0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
        0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
        0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
        0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
        0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
        0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
        0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
        0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
        0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
        0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
        0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
        0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
        0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
        0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
        0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
        0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
        0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
        0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
        0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
        0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
        0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
        0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
        0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
        0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
        0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    };
    // Initial hash value H for SHA-384 
    const static sha_word64 sha384_initial_hash_value[8] = {
        0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL,
        0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL,
        0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL,
        0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL
    };

    // Initial hash value H for SHA-512 
    const static sha_word64 sha512_initial_hash_value[8] = {
        0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
        0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
        0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
        0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
    };
#endif

/*
 * Constant used by SHA224/256/384/512_End() functions for converting the
 * digest to a readable hexadecimal character string:
 */
static const char *sha_hex_digits = "0123456789abcdef";


void sha2::SHA1_Internal_Transform(const sha_word32 *data) {
    sha_word32  a, b, c, d, e;
    sha_word32 *state = (sha_word32*)ctx.state;
    sha_word32  T1, T2, *W1=(sha_word32*)ctx.buffer;
    int j;

// Initialize registers with the prev. intermediate value 
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];
    j = 0;
    do {
        if (m_boolIsBigEndian) W1[j] = *data++;
        else REVERSE32(*data++, W1[j]);// Copy data while converting to host byte order
        T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + W1[j];
        e = d;
        d = c;
        c = ROTL32(30, b);
        b = a;
        a = T1;
        j++;
    } while (j < 16);

    do {
        T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
        if (j < 20)      T2 = Ch(b,c,d)     + K1_0_TO_19;
        else if (j < 40) T2 = Parity(b,c,d) + K1_20_TO_39;
        else if (j < 60) T2 = Maj(b,c,d)    + K1_40_TO_59;
        else             T2 = Parity(b,c,d) + K1_60_TO_79;
        T1 = ROTL32(5, a) + T2 + e + (W1[j&0x0f] = ROTL32(1, T1));
        e = d;
        d = c;
        c = ROTL32(30, b);
        b = a;
        a = T1;
        j++;
    } while (j < 80);

    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
}



///* SHA-256: ********************************************************

void sha2::SHA256_Internal_Transform(const sha_word32* data) {
    sha_word32  a, b, c, d, e, f, g, h, s0, s1;
    sha_word32 *state = (sha_word32*)ctx.state;
    sha_word32  T1, T2, *W256=(sha_word32*)ctx.buffer;;
    int j;

// Initialize registers with the prev. intermediate value 
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];
    f = state[5];
    g = state[6];
    h = state[7];

    j = 0;
    do {
        if (m_boolIsBigEndian) W256[j] = *data++;
        else REVERSE32(*data++,W256[j]);// Copy data while converting to host byte order

        T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
        T2 = Sigma0_256(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 16);

    do {
// Part of the message block expansion: 
        s0 = W256[(j+1)&0x0f];
        s0 = sigma0_256(s0);
        s1 = W256[(j+14)&0x0f];
        s1 = sigma1_256(s1);

// Apply the SHA-256 compression function to update a..h 
        T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
        (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
        T2 = Sigma0_256(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 64);

// Compute the current intermediate hash value 
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
    state[5] += f;
    state[6] += g;
    state[7] += h;
}

//** SHA-512: ********************************************************

void sha2::SHA512_Internal_Transform(const sha_word64* data) {
    sha_word64  a, b, c, d, e, f, g, h, s0, s1;
    sha_word64 *state = (sha_word64 *)ctx.state;
    sha_word64  T1, T2, *W512 = (sha_word64*)ctx.buffer;
    int j;

// Initialize registers with the prev. intermediate value 
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];
    f = state[5];
    g = state[6];
    h = state[7];

    j = 0;

    do {

        if (m_boolIsBigEndian){
            W512[j] = *data;
            data++;
        }else{
            REVERSE64(*data++, W512[j]);// copy and convert TO host byte order
        }

        T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
        T2 = Sigma0_512(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 16);

    do {
// Part of the message block expansion: 
        s0 = W512[(j+1)&0x0f];
        s0 = sigma0_512(s0);
        s1 = W512[(j+14)&0x0f];
        s1 =  sigma1_512(s1);

// Apply the SHA-512 compression function to update a..h 
        T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
        (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
        T2 = Sigma0_512(a) + Maj(a, b, c);
        h = g;
        g = f;
        f = e;
        e = d + T1;
        d = c;
        c = b;
        b = a;
        a = T1 + T2;

        j++;
    } while (j < 80);

// Compute the current intermediate hash value 
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
    state[5] += f;
    state[6] += g;
    state[7] += h;
}


void sha2::SHA256_Internal_Last(bool isSha1) {
    sha_word32    usedspace;

    usedspace = (sha_word32)(ctx.bitcount[0] >> 3) % 64;
    if (usedspace == 0) {
        MEMSET_BZERO(ctx.buffer, 56);
        ctx.buffer[0] = 0x80;
    }else {
        ctx.buffer[usedspace++] = 0x80;
        if (usedspace <= 56) {
            MEMSET_BZERO(&ctx.buffer[usedspace], 56 - usedspace);
        }else {
            if (usedspace < 64) {
                MEMSET_BZERO(&ctx.buffer[usedspace], 64 - usedspace);
            }
            if (isSha1) SHA1_Internal_Transform((sha_word32*)ctx.buffer);
            else SHA256_Internal_Transform((sha_word32*)ctx.buffer);
            MEMSET_BZERO(ctx.buffer, 56);
        }
    }

    if (!m_boolIsBigEndian) REVERSE64(ctx.bitcount[0],ctx.bitcount[0]);
    *(sha_word64*)&ctx.buffer[56] = ctx.bitcount[0];
    if (isSha1) SHA1_Internal_Transform((sha_word32*)ctx.buffer);
    else SHA256_Internal_Transform((sha_word32*)ctx.buffer);
}


void sha2::SHA512_Internal_Last() {
    sha_word32    usedspace;

    usedspace = (sha_word32)(ctx.bitcount[0] >> 3) % 128;
    if (usedspace == 0) {
        MEMSET_BZERO(ctx.buffer, 112);
        ctx.buffer[0] = 0x80;
    }else{
        ctx.buffer[usedspace++] = 0x80;
        if (usedspace <= 112) {
            MEMSET_BZERO(&ctx.buffer[usedspace], 112 - usedspace);
        }else {
            if (usedspace < 128) {
                MEMSET_BZERO(&ctx.buffer[usedspace], 128 - usedspace);
            }
            SHA512_Internal_Transform((sha_word64*)ctx.buffer);
            MEMSET_BZERO(ctx.buffer, 112);
        }
        usedspace = 0;
    }

    if (!m_boolIsBigEndian){
        REVERSE64(ctx.bitcount[0],ctx.bitcount[0]);
        REVERSE64(ctx.bitcount[1],ctx.bitcount[1]);
    }

    *(sha_word64*)&ctx.buffer[112] = ctx.bitcount[1];
    *(sha_word64*)&ctx.buffer[120] = ctx.bitcount[0];
    SHA512_Internal_Transform((sha_word64*)ctx.buffer);
}



void sha2::SHA32bit_Update(const sha_byte *data, size_t len, bool isSha1) {
    sha_word32 freespace, usedspace;
    
    if (len<1){return;}// Calling with no data is valid - we do nothing 

    usedspace = (sha_word32)(ctx.bitcount[0] >> 3) % 64;
    if (usedspace > 0) {// Calculate how much free space is available in the buffer 
        freespace = 64 - usedspace;
        if (len >= freespace) {// Fill the buffer completely and process it 
            MEMCPY_BCOPY(&ctx.buffer[usedspace], data, freespace);
            ctx.bitcount[0] += freespace << 3;
            len -= freespace;
            data += freespace;
            if (isSha1) SHA1_Internal_Transform((sha_word32 *)ctx.buffer);
            else SHA256_Internal_Transform((sha_word32 *)ctx.buffer);
        }else {// The buffer is not yet full
            MEMCPY_BCOPY(&ctx.buffer[usedspace], data, len);
            ctx.bitcount[0] += len << 3;
            return;
        }
    }
    while (len >= 64) {// Process as many complete blocks as we can
        if (isSha1) SHA1_Internal_Transform((sha_word32*)data);
        else SHA256_Internal_Transform((sha_word32*)data);
        ctx.bitcount[0] += 512;
        len -= 64;
        data += 64;
    }
    if (len > 0) {// There's left-overs, so save 'em
        MEMCPY_BCOPY(&ctx.buffer, data, len);
        ctx.bitcount[0] += len << 3;
    }
}



void sha2::SHA64bit_Update(const sha_byte *data, size_t len) {
    sha_word32 freespace, usedspace;

    if (len < 1){return;}// Calling with no data is valid - we do nothing 

    usedspace = (sha_word32)(ctx.bitcount[0] >> 3) % 128;
    if (usedspace > 0) {// Calculate how much free space is available in the buffer 
        freespace = 128 - usedspace;
        if (len >= freespace) {// Fill the buffer completely and process it 
            MEMCPY_BCOPY(&ctx.buffer[usedspace], data, freespace);
            ADDINC128(ctx.bitcount, freespace << 3);
            len -= freespace;
            data += freespace;
            SHA512_Internal_Transform((sha_word64*)ctx.buffer);
        }else {// The buffer is not yet full 
            MEMCPY_BCOPY(&ctx.buffer[usedspace], data, len);
            ADDINC128(ctx.bitcount, len << 3);
            return;
        }
    }
    while (len >= 128) {// Process as many complete blocks as we can 
        SHA512_Internal_Transform((sha_word64*)data);
        ADDINC128(ctx.bitcount, 1024);
        len -= 128;
        data += 128;
    }
    if (len > 0) {// There's left-overs, so save 'em 
        MEMCPY_BCOPY(ctx.buffer, data, len);
        ADDINC128(ctx.bitcount, len << 3);
    }
}


/*
 *
 *
 *
 *  Public interfaces...
 *
 *
 *
 */

void sha2::Init(SHA_TYPE type){
    m_Type = type;
    m_boolEnded = false;
    MEMSET_BZERO(&ctx, sizeof(SHA_CTX));
    switch (m_Type){
        case enuSHA1   : MEMCPY_BCOPY(ctx.state, sha1_initial_hash_value, sizeof(sha_word32) * 5); break;
        case enuSHA224 : MEMCPY_BCOPY(ctx.state, sha224_initial_hash_value, sizeof(sha_word32) * 8); break;
        case enuSHA256 : MEMCPY_BCOPY(ctx.state, sha256_initial_hash_value, sizeof(sha_word32) * 8); break;
        case enuSHA384 : MEMCPY_BCOPY(ctx.state, sha384_initial_hash_value, sizeof(sha_word64) * 8); break;
        case enuSHA512 : MEMCPY_BCOPY(ctx.state, sha512_initial_hash_value, sizeof(sha_word64) * 8); break;
        default : throw std::runtime_error("Invalid SHA_TYPE type!");
    }
}


void sha2::Update(const sha_byte* data, size_t len){
    switch (m_Type){
        case enuSHA1   : SHA32bit_Update(data, len, true); break;
        case enuSHA224 : SHA32bit_Update(data, len); break;
        case enuSHA256 : SHA32bit_Update(data, len); break;
        case enuSHA384 : SHA64bit_Update(data, len); break;
        case enuSHA512 : SHA64bit_Update(data, len); break;
        default : throw std::runtime_error("Invalid SHA_TYPE type!");
    }
}


void sha2::End(){
    sha_byte *d = m_digest;
    char *buf = m_chrHexHash;
    int i, j, diglen, statecnt=8;
    bool is64bit=false;
    sha_word32 *state32=(sha_word32 *)ctx.state;
    sha_word64 *state64=(sha_word64 *)ctx.state;

    switch (m_Type){
        case enuSHA1   : {
            SHA256_Internal_Last(true);
            statecnt = 5;
            diglen = SHA1_DIGESTC_LENGTH;
            break;
        }
        case enuSHA224 : {
            SHA256_Internal_Last();
            diglen = SHA224_DIGESTC_LENGTH;
            break;
        }
        case enuSHA256 : {
            SHA256_Internal_Last();
            diglen = SHA256_DIGESTC_LENGTH;
            break;
        }
        case enuSHA384 : {
            SHA512_Internal_Last();
            is64bit = true;
            diglen = SHA384_DIGESTC_LENGTH;
            break;
        }
        case enuSHA512 : {
            SHA512_Internal_Last();
            is64bit = true;
            diglen = SHA512_DIGESTC_LENGTH;
            break;
        }
        default : throw std::runtime_error("Invalid SHA_TYPE type!");
    }
    if (m_boolIsBigEndian){
        MEMCPY_BCOPY(&m_digest, &ctx.state, diglen);
    }else{
        sha_byte *dp = m_digest, *ptr;
        for (i=0; i<statecnt; i++){
            if (is64bit) ptr = (sha_byte *)&state64[i];
            else ptr = (sha_byte *)&state32[i];
            for (j = is64bit ? 7 : 3; j>-1; --j) *dp++ = ptr[j];
        }
    }

    for (i=0; i<diglen; i++) {
        *buf++ = sha_hex_digits[(*d & 0xf0) >> 4];
        *buf++ = sha_hex_digits[*d & 0x0f];
        d++;
    }
    *buf = (char)0;
    m_strHash = m_chrHexHash;
    m_boolEnded = true;
}

const string &sha2::GetHash(SHA_TYPE type, const sha_byte* data, size_t len){
    Init(type);
    Update(data, len);
    End();
    return m_strHash;
}



const char *sha2::HexHash(){
    if (!m_boolEnded) throw std::runtime_error("Unfinished execution!");
    return m_strHash.c_str();
}
const string &sha2::StringHash(){
    if (!m_boolEnded) throw std::runtime_error("Unfinished execution!");
    return m_strHash;
}
const char *sha2::RawHash(int &length){
    if (!m_boolEnded) throw std::runtime_error("Unfinished execution!");
    switch (m_Type){
        case enuSHA1   : length = SHA1_DIGESTC_LENGTH;   break;
        case enuSHA224 : length = SHA224_DIGESTC_LENGTH; break;
        case enuSHA256 : length = SHA256_DIGESTC_LENGTH; break;
        case enuSHA384 : length = SHA384_DIGESTC_LENGTH; break;
        case enuSHA512 : length = SHA512_DIGESTC_LENGTH; break;
        default : length = 0;
    }
    return (const char *)m_digest;
}