/*
* The Mana Client
* Copyright (C) 2004-2009 The Mana World Development Team
* Copyright (C) 2009-2012 The Mana Developers
*
* This file is part of The Mana Client.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "map.h"
#include "actorspritemanager.h"
#include "client.h"
#include "configuration.h"
#include "graphics.h"
#include "particle.h"
#include "simpleanimation.h"
#include "tileset.h"
#include "resources/ambientlayer.h"
#include "resources/image.h"
#include "resources/resourcemanager.h"
#include "net/net.h"
#include "utils/dtor.h"
#include "utils/stringutils.h"
#include <queue>
#include <limits.h>
/**
* A location on a tile map. Used for pathfinding, open list.
*/
struct Location
{
Location(int px, int py, MetaTile *ptile):
x(px), y(py), tile(ptile)
{}
/**
* Comparison operator.
*/
bool operator< (const Location &loc) const
{
return tile->Fcost > loc.tile->Fcost;
}
int x, y;
MetaTile *tile;
};
TileAnimation::TileAnimation(Animation *ani):
mLastImage(nullptr)
{
mAnimation = new SimpleAnimation(ani);
}
TileAnimation::~TileAnimation()
{
delete mAnimation;
}
void TileAnimation::update(int ticks)
{
if (!mAnimation)
return;
// update animation
mAnimation->update(ticks);
// exchange images
Image *img = mAnimation->getCurrentImage();
if (img != mLastImage)
{
for (auto i =
mAffected.begin(); i != mAffected.end(); i++)
{
i->first->setTile(i->second, img);
}
mLastImage = img;
}
}
MapLayer::MapLayer(int x, int y, int width, int height, bool isFringeLayer,
Map *map):
mX(x), mY(y),
mWidth(width), mHeight(height),
mIsFringeLayer(isFringeLayer),
mMap(map)
{
const int size = mWidth * mHeight;
mTiles = new Image*[size];
std::fill_n(mTiles, size, (Image*) nullptr);
}
MapLayer::~MapLayer()
{
delete[] mTiles;
}
void MapLayer::setTile(int x, int y, Image *img)
{
setTile(x + y * mWidth, img);
}
void MapLayer::draw(Graphics *graphics,
int startX, int startY,
int endX, int endY,
int scrollX, int scrollY,
const Actors &actors, int debugFlags) const
{
startX -= mX;
startY -= mY;
endX -= mX;
endY -= mY;
if (startX < 0) startX = 0;
if (startY < 0) startY = 0;
if (endX > mWidth) endX = mWidth;
if (endY > mHeight) endY = mHeight;
auto ai = actors.begin();
int dx = (mX * mMap->getTileWidth()) - scrollX;
int dy = (mY * mMap->getTileHeight()) - scrollY + mMap->getTileHeight();
for (int y = startY; y < endY; y++)
{
int pixelY = y * mMap->getTileHeight();
// If drawing the fringe layer, make sure all actors above this row of
// tiles have been drawn
if (mIsFringeLayer)
{
while (ai != actors.end() && (*ai)->getDrawOrder()
<= y * mMap->getTileHeight())
{
(*ai)->draw(graphics, -scrollX, -scrollY);
++ai;
}
}
if (!(debugFlags & Map::DEBUG_SPECIAL3))
{
const int py0 = pixelY + dy;
for (int x = startX; x < endX; x++)
{
Image *img = getTile(x, y);
if (img)
{
const int px = (x * mMap->getTileWidth()) + dx;
const int py = py0 - img->getHeight();
if (!(debugFlags & (Map::DEBUG_SPECIAL1 | Map::DEBUG_SPECIAL2))
|| img->getHeight() <= mMap->getTileHeight())
{
int width = 0;
int c = getTileDrawWidth(x, y, endX, width);
if (!c)
{
graphics->drawImage(img, px, py);
}
else
{
graphics->drawImagePattern(img, px, py,
width, img->getHeight());
}
x += c;
}
}
}
}
}
// Draw any remaining actors
if (mIsFringeLayer)
{
while (ai != actors.end())
{
(*ai)->draw(graphics, -scrollX, -scrollY);
ai++;
}
}
}
int MapLayer::getTileDrawWidth(int x1, int y1, int endX, int &width) const
{
Image *img1 = getTile(x1, y1);
int c = 0;
width = img1->getWidth();
// Images that don't match the tile width can't be drawn as a pattern
if (width != mMap->getTileWidth())
return c;
for (int x = x1 + 1; x < endX; x++)
{
Image *img = getTile(x, y1);
if (img != img1)
break;
c++;
width += img->getWidth();
}
return c;
}
Map::Map(int width, int height, int tileWidth, int tileHeight):
mWidth(width), mHeight(height),
mTileWidth(tileWidth), mTileHeight(tileHeight),
mMaxTileHeight(tileHeight),
mMaxTileWidth(tileWidth),
mDebugFlags(DEBUG_NONE),
mOnClosedList(1), mOnOpenList(2),
mLastScrollX(0.0f), mLastScrollY(0.0f)
{
const int size = mWidth * mHeight;
mMetaTiles = new MetaTile[size];
for (int i = 0; i < NB_BLOCKTYPES; i++)
{
mOccupation[i] = new unsigned[size];
memset(mOccupation[i], 0, size * sizeof(unsigned));
}
}
Map::~Map()
{
// delete metadata, layers, tilesets and overlays
delete[] mMetaTiles;
for (int i = 0; i < NB_BLOCKTYPES; i++)
{
delete[] mOccupation[i];
}
delete_all(mLayers);
delete_all(mTilesets);
delete_all(mForegrounds);
delete_all(mBackgrounds);
delete_all(mTileAnimations);
}
void Map::initializeAmbientLayers()
{
ResourceManager *resman = ResourceManager::getInstance();
auto addAmbientLayer = [=](const std::string &name, std::list<AmbientLayer*> &list)
{
if (Image *img = resman->getImage(getProperty(name + "image")))
{
auto ambientLayer = new AmbientLayer(img);
ambientLayer->mParallax = getFloatProperty(name + "parallax");
ambientLayer->mSpeedX = getFloatProperty(name + "scrollX");
ambientLayer->mSpeedY = getFloatProperty(name + "scrollY");
ambientLayer->mMask = getIntProperty(name + "mask", 1);
list.push_back(ambientLayer);
// The AmbientLayer takes control over the image.
img->decRef();
}
};
// search for "foreground*" or "overlay*" (old term) in map properties
for (int i = 0; /* terminated by a break */; i++)
{
if (hasProperty("foreground" + toString(i) + "image"))
{
addAmbientLayer("foreground" + toString(i), mForegrounds);
}
else if (hasProperty("overlay" + toString(i) + "image"))
{
addAmbientLayer("overlay" + toString(i), mForegrounds);
}
else
{
break; // the FOR loop
}
}
// search for "background*" in map properties
for (int i = 0;
hasProperty("background" + toString(i) + "image");
i++)
{
addAmbientLayer("background" + toString(i), mBackgrounds);
}
}
void Map::addLayer(MapLayer *layer)
{
mLayers.push_back(layer);
}
void Map::addTileset(Tileset *tileset)
{
mTilesets.push_back(tileset);
if (tileset->getHeight() > mMaxTileHeight)
mMaxTileHeight = tileset->getHeight();
if (tileset->getWidth() > mMaxTileWidth)
mMaxTileWidth = tileset->getWidth();
}
bool actorCompare(const Actor *a, const Actor *b)
{
return a->getDrawOrder() < b->getDrawOrder();
}
void Map::update(int ticks)
{
// Update animated tiles
for (auto iAni = mTileAnimations.begin();
iAni != mTileAnimations.end();
iAni++)
{
iAni->second->update(ticks);
}
}
void Map::draw(Graphics *graphics, int scrollX, int scrollY)
{
// Calculate range of tiles which are on-screen
int endPixelY = graphics->getHeight() + scrollY + mTileHeight - 1;
endPixelY += mMaxTileHeight - mTileHeight;
int startX = (scrollX - mMaxTileWidth + mTileWidth) / mTileWidth;
int startY = scrollY / mTileHeight;
int endX = (graphics->getWidth() + scrollX + mTileWidth - 1) / mTileWidth;
int endY = endPixelY / mTileHeight;
// Make sure actors are sorted ascending by Y-coordinate
// so that they overlap correctly
mActors.sort(actorCompare);
// update scrolling of all ambient layers
updateAmbientLayers(scrollX, scrollY);
// Draw backgrounds
drawAmbientLayers(graphics, BACKGROUND_LAYERS, scrollX, scrollY,
config.getIntValue("OverlayDetail"));
// draw the game world
Layers::const_iterator layeri = mLayers.begin();
bool overFringe = false;
if (mDebugFlags & DEBUG_SPECIAL3)
{
for (; layeri != mLayers.end(); ++layeri)
{
if ((*layeri)->isFringeLayer())
{
(*layeri)->draw(graphics,
startX, startY, endX, endY,
scrollX, scrollY,
mActors, mDebugFlags);
}
}
}
else
{
for (; layeri != mLayers.end() && !overFringe; ++layeri)
{
if (((*layeri)->getMask() & mMask) == 0)
continue;
if ((*layeri)->isFringeLayer() && (mDebugFlags & DEBUG_SPECIAL2))
overFringe = true;
(*layeri)->draw(graphics,
startX, startY, endX, endY,
scrollX, scrollY,
mActors, mDebugFlags);
}
}
// If the transparency hasn't been disabled,
if (Image::useOpenGL() || !Image::SDLisTransparencyDisabled())
{
// We draw beings with a lower opacity to make them visible
// even when covered by a wall or some other elements...
Actors::const_iterator ai = mActors.begin();
while (ai != mActors.end())
{
if (Actor *actor = *ai)
{
// For now, just draw actors with only one layer.
if (actor->drawnWhenBehind())
{
actor->setAlpha(0.3f);
actor->draw(graphics, -scrollX, -scrollY);
actor->setAlpha(1.0f);
}
}
ai++;
}
}
drawAmbientLayers(graphics, FOREGROUND_LAYERS, scrollX, scrollY,
config.getIntValue("OverlayDetail"));
}
void Map::drawCollision(Graphics *graphics, int scrollX, int scrollY,
int debugFlags)
{
int endPixelY = graphics->getHeight() + scrollY + mTileHeight - 1;
int startX = scrollX / mTileWidth;
int startY = scrollY / mTileHeight;
int endX = (graphics->getWidth() + scrollX + mTileWidth - 1) / mTileWidth;
int endY = endPixelY / mTileHeight;
if (startX < 0) startX = 0;
if (startY < 0) startY = 0;
if (endX > mWidth) endX = mWidth;
if (endY > mHeight) endY = mHeight;
for (int y = startY; y < endY; y++)
{
for (int x = startX; x < endX; x++)
{
graphics->setColor(gcn::Color(0, 0, 0, 64));
if (debugFlags & DEBUG_GRID)
{
graphics->drawRectangle(gcn::Rectangle(
x * mTileWidth - scrollX,
y * mTileHeight - scrollY,
mTileWidth + 1, mTileHeight + 1));
}
if (!(debugFlags & DEBUG_COLLISION_TILES))
continue;
if (!getWalk(x, y, BLOCKMASK_WALL))
{
graphics->setColor(gcn::Color(0, 0, 200, 64));
graphics->fillRectangle(gcn::Rectangle(
x * mTileWidth - scrollX,
y * mTileHeight - scrollY,
mTileWidth, mTileHeight));
}
if (!getWalk(x, y, BLOCKMASK_MONSTER))
{
graphics->setColor(gcn::Color(200, 0, 0, 64));
graphics->fillRectangle(gcn::Rectangle(
x * mTileWidth - scrollX,
y * mTileHeight - scrollY,
mTileWidth, mTileHeight));
}
if (!getWalk(x, y, BLOCKMASK_CHARACTER))
{
graphics->setColor(gcn::Color(0, 200, 0, 64));
graphics->fillRectangle(gcn::Rectangle(
x * mTileWidth - scrollX,
y * mTileHeight - scrollY,
mTileWidth, mTileHeight));
}
}
}
}
void Map::updateAmbientLayers(float scrollX, float scrollY)
{
static int lastTick = tick_time; // static = only initialized at first call
if (mLastScrollX == 0.0f && mLastScrollY == 0.0f)
{
// First call - initialisation
mLastScrollX = scrollX;
mLastScrollY = scrollY;
}
// Update Overlays
float dx = scrollX - mLastScrollX;
float dy = scrollY - mLastScrollY;
int timePassed = get_elapsed_time(lastTick);
std::list<AmbientLayer*>::iterator i;
for (i = mBackgrounds.begin(); i != mBackgrounds.end(); i++)
{
if (((*i)->mMask & mMask) == 0)
continue;
(*i)->update(timePassed, dx, dy);
}
for (i = mForegrounds.begin(); i != mForegrounds.end(); i++)
{
if (((*i)->mMask & mMask) == 0)
continue;
(*i)->update(timePassed, dx, dy);
}
mLastScrollX = scrollX;
mLastScrollY = scrollY;
lastTick = tick_time;
}
void Map::drawAmbientLayers(Graphics *graphics, LayerType type,
float scrollX, float scrollY, int detail)
{
// Detail 0 = no ambient effects except background image
if (detail <= 0 && type != BACKGROUND_LAYERS) return;
// find out which layer list to draw
std::list<AmbientLayer*> *layers;
switch (type)
{
case FOREGROUND_LAYERS:
layers = &mForegrounds;
break;
case BACKGROUND_LAYERS:
layers = &mBackgrounds;
break;
default:
// New type of ambient layers added here without adding it
// to Map::drawAmbientLayers.
assert(false);
break;
}
// Draw overlays
for (auto i = layers->begin();
i != layers->end(); i++)
{
if (((*i)->mMask & mMask) == 0)
continue;
(*i)->draw(graphics, graphics->getWidth(), graphics->getHeight());
// Detail 1: only one overlay, higher: all overlays
if (detail == 1)
break;
}
}
Tileset *Map::getTilesetWithGid(unsigned gid) const
{
Tileset *s = nullptr;
for (auto it = mTilesets.begin(),
it_end = mTilesets.end(); it < it_end && (*it)->getFirstGid() <= gid;
it++)
s = *it;
return s;
}
void Map::blockTile(int x, int y, BlockType type)
{
if (type == BLOCKTYPE_NONE || !contains(x, y))
return;
const int tileNum = x + y * mWidth;
if (mOccupation[type][tileNum] < UINT_MAX &&
(++mOccupation[type][tileNum]) > 0)
{
switch (type)
{
case BLOCKTYPE_WALL:
mMetaTiles[tileNum].blockmask |= BLOCKMASK_WALL;
break;
case BLOCKTYPE_CHARACTER:
mMetaTiles[tileNum].blockmask |= BLOCKMASK_CHARACTER;
break;
case BLOCKTYPE_MONSTER:
mMetaTiles[tileNum].blockmask |= BLOCKMASK_MONSTER;
break;
default:
// Do nothing.
break;
}
}
}
bool Map::getWalk(int x, int y, unsigned char walkmask) const
{
// You can't walk outside of the map
if (!contains(x, y))
return false;
// Check if the tile is walkable
return !(mMetaTiles[x + y * mWidth].blockmask & walkmask);
}
bool Map::occupied(int x, int y) const
{
const ActorSprites &actors = actorSpriteManager->getAll();
ActorSpritesConstIterator it, it_end;
for (it = actors.begin(), it_end = actors.end(); it != it_end; it++)
{
const ActorSprite *actor = *it;
if (actor->getTileX() == x && actor->getTileY() == y &&
actor->getType() != ActorSprite::FLOOR_ITEM)
return true;
}
return false;
}
Vector Map::getTileCenter(int x, int y)
{
Vector tileCenterPos;
tileCenterPos.x = x * mTileWidth + mTileWidth / 2;
tileCenterPos.y = y * mTileHeight + mTileHeight / 2;
return tileCenterPos;
}
bool Map::contains(int x, int y) const
{
return x >= 0 && y >= 0 && x < mWidth && y < mHeight;
}
MetaTile *Map::getMetaTile(int x, int y) const
{
return &mMetaTiles[x + y * mWidth];
}
Actors::iterator Map::addActor(Actor *actor)
{
mActors.push_front(actor);
return mActors.begin();
}
void Map::removeActor(Actors::iterator iterator)
{
mActors.erase(iterator);
}
std::string Map::getMusicFile() const
{
return getProperty("music");
}
std::string Map::getName() const
{
if (hasProperty("name"))
return getProperty("name");
return getProperty("mapname");
}
std::string Map::getFilename() const
{
std::string fileName = getProperty("_filename");
int lastSlash = fileName.rfind("/") + 1;
int lastDot = fileName.rfind(".");
return fileName.substr(lastSlash, lastDot - lastSlash);
}
Position Map::checkNodeOffsets(int radius, unsigned char walkMask,
const Position &position) const
{
// Pre-computing character's position in tiles
const int tx = position.x / mTileWidth;
const int ty = position.y / mTileHeight;
// Pre-computing character's position offsets.
int fx = position.x % mTileWidth;
int fy = position.y % mTileHeight;
// Compute the being radius:
// FIXME: Hande beings with more than 1/2 tile radius by not letting them
// go or spawn in too narrow places. The server will have to be aware
// of being's radius value (in tiles) to handle this gracefully.
if (radius > mTileWidth / 2) radius = mTileWidth / 2;
// set a default value if no value returned.
if (radius < 1) radius = mTileWidth / 3;
// We check diagonal first as they are more restrictive.
// Top-left border check
if (!getWalk(tx - 1, ty - 1, walkMask)
&& fy < radius && fx < radius)
{
fx = fy = radius;
}
// Top-right border check
if (!getWalk(tx + 1, ty - 1, walkMask)
&& (fy < radius) && fx > (mTileWidth - radius))
{
fx = mTileWidth - radius;
fy = radius;
}
// Bottom-left border check
if (!getWalk(tx - 1, ty + 1, walkMask)
&& fy > (mTileHeight - radius) && fx < radius)
{
fx = radius;
fy = mTileHeight - radius;
}
// Bottom-right border check
if (!getWalk(tx + 1, ty + 1, walkMask)
&& fy > (mTileHeight - radius) && fx > (mTileWidth - radius))
{
fx = mTileWidth - radius;
fy = mTileHeight - radius;
}
// Fix coordinates so that the player does not seem to dig into walls.
if (fx > (mTileWidth - radius) && !getWalk(tx + 1, ty, walkMask))
fx = mTileWidth - radius;
else if (fx < radius && !getWalk(tx - 1, ty, walkMask))
fx = radius;
else if (fy > (mTileHeight - radius) && !getWalk(tx, ty + 1, walkMask))
fy = mTileHeight - radius;
else if (fy < radius && !getWalk(tx, ty - 1, walkMask))
fy = radius;
return Position(tx * mTileWidth + fx, ty * mTileHeight + fy);
}
Path Map::findTilePath(int startPixelX, int startPixelY, int endPixelX,
int endPixelY, unsigned char walkMask, int maxCost)
{
Path myPath = findPath(startPixelX / mTileWidth, startPixelY / mTileHeight,
endPixelX / mTileWidth, endPixelY / mTileHeight,
walkMask, maxCost);
// Don't compute empty coordinates.
if (myPath.empty())
return myPath;
// Convert the map path to pixels from the tile position
auto it = myPath.begin();
while (it != myPath.end())
{
// The new pixel position will be the tile center.
*it = Position(it->x * mTileWidth + mTileWidth / 2,
it->y * mTileHeight + mTileHeight / 2);
++it;
}
return myPath;
}
Path Map::findPixelPath(int startPixelX, int startPixelY, int endPixelX,
int endPixelY,
int radius, unsigned char walkMask, int maxCost)
{
Path myPath = findPath(startPixelX / mTileWidth, startPixelY / mTileHeight,
endPixelX / mTileWidth, endPixelY / mTileHeight,
walkMask, maxCost);
// Don't compute empty coordinates.
if (myPath.empty())
return myPath;
// Find the starting offset
float startOffsetX = (startPixelX % mTileWidth);
float startOffsetY = (startPixelY % mTileHeight);
// Find the ending offset
float endOffsetX = (endPixelX % mTileWidth);
float endOffsetY = (endPixelY % mTileHeight);
// Find the distance, and divide it by the number of steps
int changeX = (int)((endOffsetX - startOffsetX) / myPath.size());
int changeY = (int)((endOffsetY - startOffsetY) / myPath.size());
// Convert the map path to pixels over tiles
// And add interpolation between the starting and ending offsets
auto it = myPath.begin();
int i = 0;
while (it != myPath.end())
{
// A position that is valid on the start and end tile is not
// necessarily valid on all the tiles in between, so check the offsets.
*it = checkNodeOffsets(radius, walkMask,
it->x * mTileWidth + startOffsetX + changeX * i,
it->y * mTileHeight + startOffsetY + changeY * i);
++i;
++it;
}
// Remove the last path node, as it's more clever to go to the destination.
// It also permit to avoid zigzag at the end of the path,
// especially with mouse.
Position destination = checkNodeOffsets(radius, walkMask,
endPixelX, endPixelY);
myPath.pop_back();
myPath.push_back(destination);
return myPath;
}
Path Map::findPath(int startX, int startY, int destX, int destY,
unsigned char walkmask, int maxCost)
{
// The basic walking cost of a tile.
const int basicCost = 100;
// Path to be built up (empty by default)
Path path;
// Declare open list, a list with open tiles sorted on F cost
std::priority_queue<Location> openList;
// Return when destination not walkable
if (!getWalk(destX, destY, walkmask))
return path;
// Reset starting tile's G cost to 0
MetaTile *startTile = getMetaTile(startX, startY);
startTile->Gcost = 0;
// Add the start point to the open list
openList.push(Location(startX, startY, startTile));
bool foundPath = false;
// Keep trying new open tiles until no more tiles to try or target found
while (!openList.empty() && !foundPath)
{
// Take the location with the lowest F cost from the open list.
Location curr = openList.top();
openList.pop();
// If the tile is already on the closed list, this means it has already
// been processed with a shorter path to the start point (lower G cost)
if (curr.tile->whichList == mOnClosedList)
continue;
// Put the current tile on the closed list
curr.tile->whichList = mOnClosedList;
// Check the adjacent tiles
for (int dy = -1; dy <= 1; dy++)
{
for (int dx = -1; dx <= 1; dx++)
{
// Calculate location of tile to check
const int x = curr.x + dx;
const int y = curr.y + dy;
// Skip if if we're checking the same tile we're leaving from,
// or if the new location falls outside of the map boundaries
if ((dx == 0 && dy == 0) || !contains(x, y))
continue;
MetaTile *newTile = getMetaTile(x, y);
// Skip if the tile is on the closed list or is not walkable
// unless its the destination tile
if (newTile->whichList == mOnClosedList ||
((newTile->blockmask & walkmask)
&& !(x == destX && y == destY)))
{
continue;
}
// When taking a diagonal step, verify that we can skip the
// corner.
if (dx != 0 && dy != 0)
{
MetaTile *t1 = getMetaTile(curr.x, curr.y + dy);
MetaTile *t2 = getMetaTile(curr.x + dx, curr.y);
if ((t1->blockmask | t2->blockmask) & walkmask)
continue;
}
// Calculate G cost for this route, ~sqrt(2) for moving diagonal
int Gcost = curr.tile->Gcost +
(dx == 0 || dy == 0 ? basicCost : basicCost * 362 / 256);
/* Demote an arbitrary direction to speed pathfinding by
adding a defect (TODO: change depending on the desired
visual effect, e.g. a cross-product defect toward
destination).
Important: as long as the total defect along any path is
less than the basicCost, the pathfinder will still find one
of the shortest paths! */
if (dx == 0 || dy == 0)
{
// Demote horizontal and vertical directions, so that two
// consecutive directions cannot have the same Fcost.
++Gcost;
}
// It costs extra to walk through a being (needs to be enough
// to make it more attractive to walk around).
// N.B.: Specific to TmwAthena for now.
if (Net::getNetworkType() == ServerInfo::TMWATHENA &&
occupied(x, y))
{
Gcost += 3 * basicCost;
}
// Skip if Gcost becomes too much
// Warning: probably not entirely accurate
if (Gcost > maxCost * basicCost)
{
continue;
}
if (newTile->whichList != mOnOpenList)
{
// Found a new tile (not on open nor on closed list)
/* Update Hcost of the new tile. The pathfinder does not
work reliably if the heuristic cost is higher than the
real cost. In particular, using Manhattan distance is
forbidden here. */
int dx = std::abs(x - destX), dy = std::abs(y - destY);
newTile->Hcost = std::abs(dx - dy) * basicCost +
std::min(dx, dy) * (basicCost * 362 / 256);
// Set the current tile as the parent of the new tile
newTile->parentX = curr.x;
newTile->parentY = curr.y;
// Update Gcost and Fcost of new tile
newTile->Gcost = Gcost;
newTile->Fcost = Gcost + newTile->Hcost;
if (x != destX || y != destY)
{
// Add this tile to the open list
newTile->whichList = mOnOpenList;
openList.push(Location(x, y, newTile));
}
else
{
// Target location was found
foundPath = true;
}
}
else if (Gcost < newTile->Gcost)
{
// Found a shorter route.
// Update Gcost and Fcost of the new tile
newTile->Gcost = Gcost;
newTile->Fcost = Gcost + newTile->Hcost;
// Set the current tile as the parent of the new tile
newTile->parentX = curr.x;
newTile->parentY = curr.y;
// Add this tile to the open list (it's already
// there, but this instance has a lower F score)
openList.push(Location(x, y, newTile));
}
}
}
}
// Two new values to indicate whether a tile is on the open or closed list,
// this way we don't have to clear all the values between each pathfinding.
if (mOnOpenList > UINT_MAX - 2)
{
// We reset the list memebers value.
mOnClosedList = 1;
mOnOpenList = 2;
// Clean up the metaTiles
const int size = mWidth * mHeight;
for (int i = 0; i < size; ++i)
mMetaTiles[i].whichList = 0;
}
else
{
mOnClosedList += 2;
mOnOpenList += 2;
}
// If a path has been found, iterate backwards using the parent locations
// to extract it.
if (foundPath)
{
int pathX = destX;
int pathY = destY;
while (pathX != startX || pathY != startY)
{
// Add the new path node to the start of the path list
path.push_front(Position(pathX, pathY));
// Find out the next parent
MetaTile *tile = getMetaTile(pathX, pathY);
pathX = tile->parentX;
pathY = tile->parentY;
}
}
return path;
}
void Map::addParticleEffect(const std::string &effectFile, int x, int y, int w,
int h)
{
ParticleEffectData newEffect;
newEffect.file = effectFile;
newEffect.x = x;
newEffect.y = y;
newEffect.w = w;
newEffect.h = h;
particleEffects.push_back(newEffect);
}
void Map::initializeParticleEffects(Particle *particleEngine)
{
Particle *p;
if (config.getBoolValue("particleeffects"))
{
for (auto i = particleEffects.begin();
i != particleEffects.end();
i++
)
{
p = particleEngine->addEffect(i->file, i->x, i->y);
if (p && i->w > 0 && i->h > 0)
{
p->adjustEmitterSize(i->w, i->h);
}
}
}
}
TileAnimation *Map::getAnimationForGid(int gid) const
{
auto i = mTileAnimations.find(gid);
return (i == mTileAnimations.end()) ? NULL : i->second;
}
void Map::setMask(int mask)
{
mMask = mask;
}