/*
* The Mana World
* Copyright 2004 The Mana World Development Team
*
* This file is part of The Mana World.
*
* The Mana World is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* The Mana World is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with The Mana World; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id$
*/
#include "map.h"
#include <algorithm>
#include <queue>
#include "tileset.h"
#include "being.h"
#include "graphics.h"
#include "resources/image.h"
#include "sprite.h"
MetaTile::MetaTile():
whichList(0)
{
}
Location::Location(int iX, int iY, MetaTile *iTile):
x(iX), y(iY), tile(iTile)
{
}
bool Location::operator< (const Location &loc) const
{
return tile->Fcost > loc.tile->Fcost;
}
Map::Map(int width, int height, int tileWidth, int tileHeight):
mWidth(width), mHeight(height),
mTileWidth(tileWidth), mTileHeight(tileHeight),
onClosedList(1), onOpenList(2)
{
metaTiles = new MetaTile[mWidth * mHeight];
tiles = new Image*[mWidth * mHeight * 3];
}
Map::~Map()
{
delete[] metaTiles;
delete[] tiles;
// Clean up tilesets
Tilesets::iterator i;
for (i = tilesets.begin(); i != tilesets.end(); i++)
{
delete (*i);
}
tilesets.clear();
}
void
Map::setSize(int width, int height)
{
mWidth = width;
mHeight = height;
delete[] metaTiles;
delete[] tiles;
metaTiles = new MetaTile[mWidth * mHeight];
tiles = new Image*[mWidth * mHeight * 3];
}
void
Map::addTileset(Tileset *tileset)
{
tilesets.push_back(tileset);
}
bool spriteCompare(const Sprite *a, const Sprite *b)
{
return a->getPixelY() < b->getPixelY();
}
void
Map::draw(Graphics *graphics, int scrollX, int scrollY, int layer)
{
int startX = scrollX / 32;
int startY = scrollY / 32;
int endX = (graphics->getWidth() + scrollX + 31) / 32;
int endY = (graphics->getHeight() + scrollY + 31) / 32;
// If drawing the fringe layer, make sure sprites are sorted
Sprites::iterator si;
if (layer == 1)
{
mSprites.sort(spriteCompare);
si = mSprites.begin();
// Increase endY to account for high fringe tiles
// TODO: Improve this hack so that it'll dynamically account for the
// highest tile.
endY += 2;
}
if (startX < 0) startX = 0;
if (startY < 0) startY = 0;
if (endX >= mWidth) endX = mWidth - 1;
if (endY >= mHeight) endY = mHeight - 1;
for (int y = startY; y < endY; y++)
{
// If drawing the fringe layer, make sure all sprites above this row of
// tiles have been drawn
if (layer == 1)
{
while (si != mSprites.end() && (*si)->getPixelY() <= y * 32 - 32)
{
(*si)->draw(graphics, -scrollX, -scrollY);
si++;
}
}
for (int x = startX; x < endX; x++)
{
Image *img = getTile(x, y, layer);
if (img) {
graphics->drawImage(img,
x * 32 - scrollX,
y * 32 - scrollY + 32 - img->getHeight());
}
}
}
// Draw any remaining sprites
if (layer == 1)
{
while (si != mSprites.end())
{
(*si)->draw(graphics, -scrollX, -scrollY);
si++;
}
}
}
void
Map::setTileWithGid(int x, int y, int layer, int gid)
{
if (layer == 3)
{
Tileset *set = getTilesetWithGid(gid);
setWalk(x, y, (!set || (gid - set->getFirstGid() == 0)));
}
else if (layer < 3)
{
setTile(x, y, layer, getTileWithGid(gid));
}
}
class ContainsGidFunctor
{
public:
bool operator() (Tileset* set)
{
return (set->getFirstGid() <= gid &&
gid - set->getFirstGid() < (int)set->spriteset.size());
}
int gid;
} containsGid;
Tileset*
Map::getTilesetWithGid(int gid)
{
Tilesets::iterator i;
containsGid.gid = gid;
i = find_if(tilesets.begin(), tilesets.end(), containsGid);
return (i == tilesets.end()) ? NULL : *i;
}
Image*
Map::getTileWithGid(int gid)
{
Tileset *set = getTilesetWithGid(gid);
if (set) {
return set->spriteset[gid - set->getFirstGid()];
}
return NULL;
}
void
Map::setWalk(int x, int y, bool walkable)
{
metaTiles[x + y * mWidth].walkable = walkable;
}
bool
Map::getWalk(int x, int y)
{
// Check for being walkable
if (tileCollides(x, y)) {
return false;
}
// Check for collision with a being
std::list<Being*>::iterator i = beings.begin();
for (i = beings.begin(); i != beings.end(); i++) {
// job 45 is a portal, they don't collide
if ((*i)->x == x && (*i)->y == y && (*i)->job != 45) {
return false;
}
}
return true;
}
bool
Map::tileCollides(int x, int y)
{
// You can't walk outside of the map
if (x < 0 || y < 0 || x >= mWidth || y >= mHeight) {
return true;
}
// Check if the tile is walkable
return !metaTiles[x + y * mWidth].walkable;
}
void
Map::setTile(int x, int y, int layer, Image *img)
{
tiles[x + y * mWidth + layer * (mWidth * mHeight)] = img;
}
Image*
Map::getTile(int x, int y, int layer)
{
return tiles[x + y * mWidth + layer * (mWidth * mHeight)];
}
MetaTile*
Map::getMetaTile(int x, int y)
{
return &metaTiles[x + y * mWidth];
}
Sprites::iterator
Map::addSprite(Sprite *sprite)
{
mSprites.push_front(sprite);
return mSprites.begin();
}
void
Map::removeSprite(Sprites::iterator iterator)
{
mSprites.erase(iterator);
}
std::list<PATH_NODE>
Map::findPath(int startX, int startY, int destX, int destY)
{
// Path to be built up (empty by default)
std::list<PATH_NODE> path;
// Declare open list, a list with open tiles sorted on F cost
std::priority_queue<Location> openList;
// Return empty path when destination not walkable
if (!getWalk(destX, destY)) return path;
// Reset starting tile's G cost to 0
MetaTile *startTile = getMetaTile(startX, startY);
startTile->Gcost = 0;
// Add the start point to the open list
openList.push(Location(startX, startY, startTile));
bool foundPath = false;
// Keep trying new open tiles until no more tiles to try or target found
while (!openList.empty() && !foundPath)
{
// Take the location with the lowest F cost from the open list.
Location curr = openList.top();
openList.pop();
// If the tile is already on the closed list, this means it has already
// been processed with a shorter path to the start point (lower G cost)
if (curr.tile->whichList == onClosedList)
{
continue;
}
// Put the current tile on the closed list
curr.tile->whichList = onClosedList;
// Check the adjacent tiles
for (int dy = -1; dy <= 1; dy++)
{
for (int dx = -1; dx <= 1; dx++)
{
// Calculate location of tile to check
int x = curr.x + dx;
int y = curr.y + dy;
// Skip if if we're checking the same tile we're leaving from,
// or if the new location falls outside of the map boundaries
if ((dx == 0 && dy == 0) ||
(x < 0 || y < 0 || x >= mWidth || y >= mHeight))
{
continue;
}
MetaTile *newTile = getMetaTile(x, y);
// Skip if the tile is on the closed list or is not walkable
if (newTile->whichList == onClosedList || !getWalk(x, y))
{
continue;
}
// When taking a diagonal step, verify that we can skip the
// corner. We allow skipping past beings but not past non-
// walkable tiles.
if (dx != 0 && dy != 0)
{
MetaTile *t1 = getMetaTile(curr.x, curr.y + dy);
MetaTile *t2 = getMetaTile(curr.x + dx, curr.y);
if (!(t1->walkable && t2->walkable))
{
continue;
}
}
// Calculate G cost for this route, 10 for moving straight and
// 14 for moving diagonal
int Gcost = curr.tile->Gcost + ((dx == 0 || dy == 0) ? 10 : 14);
// Skip if Gcost becomes too much
// Warning: probably not entirely accurate
if (Gcost > 200)
{
continue;
}
if (newTile->whichList != onOpenList)
{
// Found a new tile (not on open nor on closed list)
// Update Hcost of the new tile using Manhatten distance
newTile->Hcost = 10 * (abs(x - destX) + abs(y - destY));
// Set the current tile as the parent of the new tile
newTile->parentX = curr.x;
newTile->parentY = curr.y;
// Update Gcost and Fcost of new tile
newTile->Gcost = Gcost;
newTile->Fcost = newTile->Gcost + newTile->Hcost;
if (x != destX || y != destY) {
// Add this tile to the open list
newTile->whichList = onOpenList;
openList.push(Location(x, y, newTile));
}
else {
// Target location was found
foundPath = true;
}
}
else if (Gcost < newTile->Gcost)
{
// Found a shorter route.
// Update Gcost and Fcost of the new tile
newTile->Gcost = Gcost;
newTile->Fcost = newTile->Gcost + newTile->Hcost;
// Set the current tile as the parent of the new tile
newTile->parentX = curr.x;
newTile->parentY = curr.y;
// Add this tile to the open list (it's already
// there, but this instance has a lower F score)
openList.push(Location(x, y, newTile));
}
}
}
}
// Two new values to indicate whether a tile is on the open or closed list,
// this way we don't have to clear all the values between each pathfinding.
onClosedList += 2;
onOpenList += 2;
// If a path has been found, iterate backwards using the parent locations
// to extract it.
if (foundPath)
{
int pathX = destX;
int pathY = destY;
while (pathX != startX || pathY != startY)
{
// Add the new path node to the start of the path list
path.push_front(PATH_NODE(pathX, pathY));
// Find out the next parent
MetaTile *tile = getMetaTile(pathX, pathY);
pathX = tile->parentX;
pathY = tile->parentY;
}
}
return path;
}