1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/*
// This is the ``Mersenne Twister'' random number generator MT19937, which
// generates pseudorandom integers uniformly distributed in 0..(2^32 - 1)
// starting from any odd seed in 0..(2^32 - 1). This version is a recode
// by Shawn Cokus (Cokus@math.washington.edu) on March 8, 1998 of a version by
// Takuji Nishimura (who had suggestions from Topher Cooper and Marc Rieffel in
// July-August 1997).
//
// Effectiveness of the recoding (on Goedel2.math.washington.edu, a DEC Alpha
// running OSF/1) using GCC -O3 as a compiler: before recoding: 51.6 sec. to
// generate 300 million random numbers; after recoding: 24.0 sec. for the same
// (i.e., 46.5% of original time), so speed is now about 12.5 million random
// number generations per second on this machine.
//
// According to the URL <http://www.math.keio.ac.jp/~matumoto/emt.html>
// (and paraphrasing a bit in places), the Mersenne Twister is ``designed
// with consideration of the flaws of various existing generators,'' has
// a period of 2^19937 - 1, gives a sequence that is 623-dimensionally
// equidistributed, and ``has passed many stringent tests, including the
// die-hard test of G. Marsaglia and the load test of P. Hellekalek and
// S. Wegenkittl.'' It is efficient in memory usage (typically using 2506
// to 5012 bytes of static data, depending on data type sizes, and the code
// is quite short as well). It generates random numbers in batches of 624
// at a time, so the caching and pipelining of modern systems is exploited.
// It is also divide- and mod-free.
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Library General Public License as published by
// the Free Software Foundation (either version 2 of the License or, at your
// option, any later version). This library is distributed in the hope that
// it will be useful, but WITHOUT ANY WARRANTY, without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
// the GNU Library General Public License for more details. You should have
// received a copy of the GNU Library General Public License along with this
// library; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307, USA.
//
// The code as Shawn received it included the following notice:
//
// Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. When
// you use this, send an e-mail to <matumoto@math.keio.ac.jp> with
// an appropriate reference to your work.
//
// It would be nice to CC: <Cokus@math.washington.edu> when you write.
//
*/
#include "mt_rand.hpp"
#include <ctime>
#include "../poison.hpp"
#define N 624 // length of state vector
#define M 397 // a period parameter
#define K 0x9908B0DFU // a magic constant
#define hiBit(u) ((u) & 0x80000000U) // mask all but highest bit of u
#define loBit(u) ((u) & 0x00000001U) // mask all but lowest bit of u
#define loBits(u) ((u) & 0x7FFFFFFFU) // mask the highest bit of u
#define mixBits(u, v) (hiBit(u)|loBits(v)) // move hi bit of u to hi bit of v
static
uint32_t state[N+1]; // state vector the +1 is needed due to the coding
static
uint32_t *next; // next random value is computed from here
static
int left = -1; // can *next++ this many times before reloading
void mt_seed(uint32_t seed)
{
uint32_t x = seed | 1U;
uint32_t *s = state;
left = 0;
for (int j = N; *s++ = x, --j; x *= 69069U);
}
static
void mt_reload(void)
{
// if mt_seed has never been called
if (left < -1)
mt_seed(time(NULL));
// conceptually, these are indices into the state that wrap
uint32_t *p0 = state;
uint32_t *p2 = state + 2;
uint32_t *pM = state + M;
uint32_t s0 = state[0];
uint32_t s1 = state[1];
// regenerate the lower N-M elements of the state
for (int j = N-M+1; --j != 0; s0 = s1, s1 = *p2++)
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
pM = state;
// regenerate the next M-1 elements of the state
// note that s1 is set to state[N] at the end, but discarded
for (int j = M; --j != 0; s0 = s1, s1 = *p2++)
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
// regenerate the last 1 element of the state
s1 = state[0];
*p0 = *pM ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
// ready for the normal mt_random algorithm
left = N;
next = state;
}
uint32_t mt_random(void)
{
if (--left < 0)
mt_reload();
uint32_t y = *next++;
y ^= (y >> 11);
y ^= (y << 7) & 0x9D2C5680U;
y ^= (y << 15) & 0xEFC60000U;
return y ^ (y >> 18);
}
|