1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
|
// Copyright (c) 2015 Noah Lopez
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#pragma once
#ifndef MSEMSEVECTOR_H
#define MSEMSEVECTOR_H
/*compiler specific defines*/
#ifdef _MSC_VER
#if (1700 > _MSC_VER)
#define MSVC2010_COMPATIBLE 1
#endif /*(1700 > _MSC_VER)*/
#if (1900 > _MSC_VER)
#define MSVC2013_COMPATIBLE 1
#endif /*(1900 > _MSC_VER)*/
#else /*_MSC_VER*/
#if (defined(__GNUC__) || defined(__GNUG__))
#define GPP_COMPATIBLE 1
#if ((5 > __GNUC__) && (!defined(__clang__)))
#define GPP4P8_COMPATIBLE 1
#endif /*((5 > __GNUC__) && (!defined(__clang__)))*/
#endif
#endif /*_MSC_VER*/
//define MSE_MSEVECTOR_USE_MSE_PRIMITIVES 1
#ifdef MSE_MSEVECTOR_USE_MSE_PRIMITIVES
#include "debug/mse/mseprimitives.h"
#endif // MSE_MSEVECTOR_USE_MSE_PRIMITIVES
#include <vector>
#include <assert.h>
#include <memory>
#include <unordered_map>
#include <functional>
#include <climits> // ULONG_MAX
#include <stdexcept>
#ifdef MSE_CUSTOM_THROW_DEFINITION
#include <iostream>
#define MSE_THROW(x) MSE_CUSTOM_THROW_DEFINITION(x)
#else // MSE_CUSTOM_THROW_DEFINITION
#define MSE_THROW(x) throw(x)
#endif // MSE_CUSTOM_THROW_DEFINITION
namespace mse {
#ifdef MSE_MSEVECTOR_USE_MSE_PRIMITIVES
typedef mse::CSize_t msev_size_t;
typedef mse::CInt msev_int;
typedef bool msev_bool; // no added safety benefit to using mse::CBool in this case
#define msev_as_a_size_t as_a_size_t
#else // MSE_MSEVECTOR_USE_MSE_PRIMITIVES
#if SIZE_MAX <= ULONG_MAX
#define MSE_MSEVECTOR_BASE_INTEGER_TYPE long int
#else // SIZE_MAX <= ULONG_MAX
#define MSE_MSEVECTOR_BASE_INTEGER_TYPE long long int
#endif // SIZE_MAX <= ULONG_MAX
typedef size_t msev_size_t;
typedef MSE_MSEVECTOR_BASE_INTEGER_TYPE msev_int;
typedef bool msev_bool;
typedef size_t msev_as_a_size_t;
#endif // MSE_MSEVECTOR_USE_MSE_PRIMITIVES
class msevector_range_error : public std::range_error { public:
using std::range_error::range_error;
};
class msevector_null_dereference_error : public std::logic_error { public:
using std::logic_error::logic_error;
};
/* msev_pointer behaves similar to native pointers. It's a bit safer in that it initializes to
nullptr by default and checks for attempted dereference of null pointers. */
template<typename _Ty>
class msev_pointer {
public:
msev_pointer() : m_ptr(nullptr) {}
msev_pointer(_Ty* ptr) : m_ptr(ptr) {}
msev_pointer(const msev_pointer<_Ty>& src) : m_ptr(src.m_ptr) {}
_Ty& operator*() const {
#ifndef MSE_DISABLE_MSEAR_POINTER_CHECKS
if (nullptr == m_ptr) { MSE_THROW(msevector_null_dereference_error("attempt to dereference null pointer - mse::msev_pointer")); }
#endif /*MSE_DISABLE_MSEAR_POINTER_CHECKS*/
return (*m_ptr);
}
_Ty* operator->() const {
#ifndef MSE_DISABLE_MSEAR_POINTER_CHECKS
if (nullptr == m_ptr) { MSE_THROW(msevector_null_dereference_error("attempt to dereference null pointer - mse::msev_pointer")); }
#endif /*MSE_DISABLE_MSEAR_POINTER_CHECKS*/
return m_ptr;
}
msev_pointer<_Ty>& operator=(_Ty* ptr) {
m_ptr = ptr;
return (*this);
}
bool operator==(const msev_pointer _Right_cref) const { return (_Right_cref.m_ptr == m_ptr); }
bool operator!=(const msev_pointer _Right_cref) const { return (!((*this) == _Right_cref)); }
bool operator==(const _Ty* _Right_cref) const { return (_Right_cref == m_ptr); }
bool operator!=(const _Ty* _Right_cref) const { return (!((*this) == _Right_cref)); }
bool operator!() const { return (!m_ptr); }
operator bool() const { return (m_ptr != nullptr); }
operator _Ty*() const { return m_ptr; }
_Ty* m_ptr;
};
#ifndef _XSTD
#define _XSTD ::std::
#endif /*_XSTD*/
template<class _Ty, _Ty _Val>
struct integral_constant
{ // convenient template for integral constant types
static const _Ty value = _Val;
typedef _Ty value_type;
typedef integral_constant<_Ty, _Val> type;
operator value_type() const
{ // return stored value
return (value);
}
};
template<class _Iter>
struct _mse_Is_iterator
: public integral_constant<bool, !std::is_integral<_Iter>::value>
{ // tests for reasonable iterator candidate
};
template<typename _InIter>
using _mse_RequireInputIter = typename std::enable_if<
std::is_convertible<typename std::iterator_traits<_InIter>::iterator_category, std::input_iterator_tag>::value
//_mse_Is_iterator<_InIter>::value
>::type;
/* Note that, at the moment, msevector inherits publicly from std::vector. This is not intended to be a permanent
characteristic of msevector and any reference to, or interpretation of, an msevector as an std::vector is (and has
always been) depricated. msevector endeavors to support the subset of the std::vector interface that is compatible
with the security/safety goals of msevector. (The remaining part of the std::vector interface may be supported, as a
user option, for compatibility.)
In particular, keep in mind that std::vector does not have a virtual destructor, so deallocating an msevector as an
std::vector would result in memory leaks. */
template<class _Ty, class _A = std::allocator<_Ty> >
class msevector : public std::vector<_Ty, _A> {
public:
typedef std::vector<_Ty, _A> base_class;
typedef msevector<_Ty, _A> _Myt;
typedef typename base_class::value_type value_type;
//typedef typename base_class::size_type size_type;
typedef msev_size_t size_type;
//typedef typename base_class::difference_type difference_type;
typedef msev_int difference_type;
typedef typename base_class::pointer pointer;
typedef typename base_class::const_pointer const_pointer;
typedef typename base_class::reference reference;
typedef typename base_class::const_reference const_reference;
explicit msevector(const _A& _Al = _A())
: base_class(_Al), m_mmitset(*this) {
/*m_debug_size = size();*/
}
explicit msevector(size_type _N)
: base_class(msev_as_a_size_t(_N)), m_mmitset(*this) {
/*m_debug_size = size();*/
}
explicit msevector(size_type _N, const _Ty& _V, const _A& _Al = _A())
: base_class(msev_as_a_size_t(_N), _V, _Al), m_mmitset(*this) {
/*m_debug_size = size();*/
}
msevector(base_class&& _X) : base_class(std::move(_X)), m_mmitset(*this) { /*m_debug_size = size();*/ }
msevector(const base_class& _X) : base_class(_X), m_mmitset(*this) { /*m_debug_size = size();*/ }
msevector(_Myt&& _X) : base_class(std::move(_X)), m_mmitset(*this) { /*m_debug_size = size();*/ }
msevector(const _Myt& _X) : base_class(_X), m_mmitset(*this) { /*m_debug_size = size();*/ }
typedef typename base_class::const_iterator _It;
/* Note that safety cannot be guaranteed when using these constructors that take unsafe typename base_class::iterator and/or pointer parameters. */
msevector(_It _F, _It _L, const _A& _Al = _A()) : base_class(_F, _L, _Al), m_mmitset(*this) { /*m_debug_size = size();*/ }
msevector(const _Ty* _F, const _Ty* _L, const _A& _Al = _A()) : base_class(_F, _L, _Al), m_mmitset(*this) { /*m_debug_size = size();*/ }
template<class _Iter
//, class = typename std::enable_if<_mse_Is_iterator<_Iter>::value, void>::type
, class = _mse_RequireInputIter<_Iter> >
msevector(_Iter _First, _Iter _Last) : base_class(_First, _Last), m_mmitset(*this) { /*m_debug_size = size();*/ }
template<class _Iter
//, class = typename std::enable_if<_mse_Is_iterator<_Iter>::value, void>::type
, class = _mse_RequireInputIter<_Iter> >
//msevector(_Iter _First, _Iter _Last, const typename base_class::_Alloc& _Al) : base_class(_First, _Last, _Al), m_mmitset(*this) { /*m_debug_size = size();*/ }
msevector(_Iter _First, _Iter _Last, const _A& _Al) : base_class(_First, _Last, _Al), m_mmitset(*this) { /*m_debug_size = size();*/ }
_Myt& operator=(const base_class& _X) {
base_class::operator =(_X);
/*m_debug_size = size();*/
m_mmitset.reset();
return (*this);
}
_Myt& operator=(_Myt&& _X) {
operator=(std::move(static_cast<base_class&>(_X)));
m_mmitset.reset();
return (*this);
}
_Myt& operator=(const _Myt& _X) {
operator=(static_cast<const base_class&>(_X));
m_mmitset.reset();
return (*this);
}
void reserve(size_type _Count)
{ // determine new minimum length of allocated storage
auto original_capacity = msev_size_t((*this).capacity());
base_class::reserve(msev_as_a_size_t(_Count));
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
void shrink_to_fit() { // reduce capacity
auto original_capacity = msev_size_t((*this).capacity());
base_class::shrink_to_fit();
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
void resize(size_type _N, const _Ty& _X = _Ty()) {
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
bool shrinking = (_N < original_size);
base_class::resize(msev_as_a_size_t(_N), _X);
/*m_debug_size = size();*/
if (shrinking) {
m_mmitset.invalidate_inclusive_range(_N, msev_size_t(original_size - 1));
}
m_mmitset.shift_inclusive_range(original_size, original_size, msev_size_t(_N) - original_size); /*shift the end markers*/
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
typename base_class::const_reference operator[](size_type _P) const {
return (*this).at(msev_as_a_size_t(_P));
}
typename base_class::reference operator[](size_type _P) {
return (*this).at(msev_as_a_size_t(_P));
}
typename base_class::reference front() { // return first element of mutable sequence
if (0 == (*this).size()) { MSE_THROW(msevector_range_error("front() on empty - typename base_class::reference front() - msevector")); }
return base_class::front();
}
typename base_class::const_reference front() const { // return first element of nonmutable sequence
if (0 == (*this).size()) { MSE_THROW(msevector_range_error("front() on empty - typename base_class::const_reference front() - msevector")); }
return base_class::front();
}
typename base_class::reference back() { // return last element of mutable sequence
if (0 == (*this).size()) { MSE_THROW(msevector_range_error("back() on empty - typename base_class::reference back() - msevector")); }
return base_class::back();
}
typename base_class::const_reference back() const { // return last element of nonmutable sequence
if (0 == (*this).size()) { MSE_THROW(msevector_range_error("back() on empty - typename base_class::const_reference back() - msevector")); }
return base_class::back();
}
void push_back(_Ty&& _X) {
if (m_mmitset.is_empty()) {
base_class::push_back(std::move(_X));
}
else {
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
base_class::push_back(std::move(_X));
/*m_debug_size = size();*/
assert((original_size + 1) == msev_size_t((*this).size()));
m_mmitset.shift_inclusive_range(original_size, original_size, 1); /*shift the end markers*/
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
}
void push_back(const _Ty& _X) {
if (m_mmitset.is_empty()) {
base_class::push_back(_X);
}
else {
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
base_class::push_back(_X);
/*m_debug_size = size();*/
assert((original_size + 1) == msev_size_t((*this).size()));
m_mmitset.shift_inclusive_range(original_size, original_size, 1); /*shift the end markers*/
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
}
void pop_back() {
if (m_mmitset.is_empty()) {
base_class::pop_back();
}
else {
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
if (0 == original_size) { MSE_THROW(msevector_range_error("pop_back() on empty - void pop_back() - msevector")); }
base_class::pop_back();
/*m_debug_size = size();*/
assert((original_size - 1) == msev_size_t((*this).size()));
m_mmitset.invalidate_inclusive_range(msev_size_t(original_size - 1), msev_size_t(original_size - 1));
m_mmitset.shift_inclusive_range(original_size, original_size, -1); /*shift the end markers*/
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
}
void assign(_It _F, _It _L) {
base_class::assign(_F, _L);
/*m_debug_size = size();*/
m_mmitset.reset();
}
template<class _Iter>
void assign(_Iter _First, _Iter _Last) { // assign [_First, _Last)
base_class::assign(_First, _Last);
/*m_debug_size = size();*/
m_mmitset.reset();
}
void assign(size_type _N, const _Ty& _X = _Ty()) {
base_class::assign(msev_as_a_size_t(_N), _X);
/*m_debug_size = size();*/
m_mmitset.reset();
}
typename base_class::iterator insert(typename base_class::const_iterator _P, _Ty&& _X) {
return (emplace(_P, std::move(_X)));
}
typename base_class::iterator insert(typename base_class::const_iterator _P, const _Ty& _X = _Ty()) {
if (m_mmitset.is_empty()) {
typename base_class::iterator retval = base_class::insert(_P, _X);
/*m_debug_size = size();*/
return retval;
}
else {
msev_int di = std::distance(base_class::cbegin(), _P);
msev_size_t d = msev_size_t(di);
if ((0 > di) || (msev_size_t((*this).size()) < di)) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
typename base_class::iterator retval = base_class::insert(_P, _X);
/*m_debug_size = size();*/
assert((original_size + 1) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
m_mmitset.shift_inclusive_range(d, original_size, 1);
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
#if !(defined(GPP4P8_COMPATIBLE))
typename base_class::iterator insert(typename base_class::const_iterator _P, size_type _M, const _Ty& _X) {
if (m_mmitset.is_empty()) {
typename base_class::iterator retval = base_class::insert(_P, msev_as_a_size_t(_M), _X);
/*m_debug_size = size();*/
return retval;
}
else {
msev_int di = std::distance(base_class::cbegin(), _P);
msev_size_t d = msev_size_t(di);
if ((0 > di) || ((*this).size() < msev_size_t(di))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
typename base_class::iterator retval = base_class::insert(_P, msev_as_a_size_t(_M), _X);
/*m_debug_size = size();*/
assert((original_size + _M) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
m_mmitset.shift_inclusive_range(d, original_size, msev_int(_M));
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
typename base_class::iterator insert(typename base_class::const_iterator _Where, _Iter _First, _Iter _Last) { // insert [_First, _Last) at _Where
if (m_mmitset.is_empty()) {
auto retval = base_class::insert(_Where, _First, _Last);
/*m_debug_size = size();*/
return retval;
}
else {
msev_int di = std::distance(base_class::cbegin(), _Where);
msev_size_t d = msev_size_t(di);
if ((0 > di) || ((*this).size() < msev_size_t(di))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto _M = msev_int(std::distance(_First, _Last));
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
//if (0 > _M) { MSE_THROW(msevector_range_error("invalid argument - typename base_class::iterator insert() - msevector")); }
auto retval = base_class::insert(_Where, _First, _Last);
/*m_debug_size = size();*/
assert((original_size + _M) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
m_mmitset.shift_inclusive_range(d, original_size, _M);
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
#else /*!(defined(GPP4P8_COMPATIBLE))*/
/*typename base_class::iterator*/
void
/* g++4.8 seems to be using the c++98 version of this insert function instead of the c++11 version. */
insert(typename base_class::/*const_*/iterator _P, size_t _M, const _Ty& _X) {
msev_int di = std::distance(base_class::/*c*/begin(), _P);
msev_size_t d = msev_size_t(di);
if ((0 > di) || (msev_size_t((*this).size()) < di)) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
/*typename base_class::iterator retval =*/
base_class::insert(_P, _M, _X);
/*m_debug_size = size();*/
assert((original_size + _M) == msev_size_t((*this).size()));
/*assert(di == std::distance(base_class::begin(), retval));*/
m_mmitset.shift_inclusive_range(d, original_size, _M);
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
/*return retval;*/
}
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, void>::type
, class = _mse_RequireInputIter<_Iter> > void
insert(typename base_class::/*const_*/iterator _Where, _Iter _First, _Iter _Last) { // insert [_First, _Last) at _Where
msev_int di = std::distance(base_class::/*c*/begin(), _Where);
msev_size_t d = msev_size_t(di);
if ((0 > di) || (msev_size_t((*this).size()) < di)) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto _M = msev_int(std::distance(_First, _Last));
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
//if (0 > _M) { MSE_THROW(msevector_range_error("invalid argument - typename base_class::iterator insert() - msevector")); }
/*auto retval =*/
base_class::insert(_Where, _First, _Last);
/*m_debug_size = size();*/
assert((original_size + _M) == msev_size_t((*this).size()));
/*assert(di == std::distance(base_class::begin(), retval));*/
m_mmitset.shift_inclusive_range(d, original_size, _M);
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
/*return retval;*/
}
#endif /*!(defined(GPP4P8_COMPATIBLE))*/
template<class ..._Valty>
void emplace_back(_Valty&& ..._Val)
{ // insert by moving into element at end
if (m_mmitset.is_empty()) {
base_class::emplace_back(std::forward<_Valty>(_Val)...);
/*m_debug_size = size();*/
}
else {
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
base_class::emplace_back(std::forward<_Valty>(_Val)...);
/*m_debug_size = size();*/
assert((original_size + 1) == msev_size_t((*this).size()));
m_mmitset.shift_inclusive_range(original_size, original_size, 1); /*shift the end markers*/
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
}
}
template<class ..._Valty>
#if !(defined(GPP4P8_COMPATIBLE))
typename base_class::iterator emplace(typename base_class::const_iterator _Where, _Valty&& ..._Val)
{ // insert by moving _Val at _Where
#else /*!(defined(GPP4P8_COMPATIBLE))*/
typename base_class::iterator emplace(typename base_class::/*const_*/iterator _Where, _Valty&& ..._Val)
{ // insert by moving _Val at _Where
#endif /*!(defined(GPP4P8_COMPATIBLE))*/
if (m_mmitset.is_empty()) {
auto retval = base_class::emplace(_Where, std::forward<_Valty>(_Val)...);
/*m_debug_size = size();*/
return retval;
}
else {
#if !(defined(GPP4P8_COMPATIBLE))
msev_int di = std::distance(base_class::cbegin(), _Where);
#else /*!(defined(GPP4P8_COMPATIBLE))*/
msev_int di = std::distance(base_class::/*c*/begin(), _Where);
#endif /*!(defined(GPP4P8_COMPATIBLE))*/
msev_size_t d = msev_size_t(di);
if ((0 > di) || ((*this).size() < msev_size_t(di))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator emplace() - msevector")); }
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
auto retval = base_class::emplace(_Where, std::forward<_Valty>(_Val)...);
/*m_debug_size = size();*/
assert((original_size + 1) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
m_mmitset.shift_inclusive_range(d, original_size, 1);
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
typename base_class::iterator erase(typename base_class::const_iterator _P) {
if (m_mmitset.is_empty()) {
typename base_class::iterator retval = base_class::erase(_P);
/*m_debug_size = size();*/
return retval;
}
else {
msev_int di = std::distance(base_class::cbegin(), _P);
msev_size_t d = msev_size_t(di);
if ((0 > di) || ((*this).size() < msev_size_t(di))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator erase() - msevector")); }
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
if (base_class::end() == _P) { MSE_THROW(msevector_range_error("invalid argument - typename base_class::iterator erase(typename base_class::const_iterator _P) - msevector")); }
typename base_class::iterator retval = base_class::erase(_P);
/*m_debug_size = size();*/
assert((original_size - 1) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
{
m_mmitset.invalidate_inclusive_range(d, d);
m_mmitset.shift_inclusive_range(msev_size_t(d + 1), original_size, -1);
}
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
typename base_class::iterator erase(typename base_class::const_iterator _F, typename base_class::const_iterator _L) {
if (m_mmitset.is_empty()) {
typename base_class::iterator retval = base_class::erase(_F, _L);
/*m_debug_size = size();*/
return retval;
}
else {
msev_int di = std::distance(base_class::cbegin(), _F);
msev_size_t d = msev_size_t(di);
if ((0 > di) || ((*this).size() < msev_size_t(di))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator erase() - msevector")); }
msev_int di2 = std::distance(base_class::cbegin(), _L);
msev_size_t d2 = msev_size_t(di2);
if ((0 > di2) || ((*this).size() < msev_size_t(di2))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator erase() - msevector")); }
auto _M = msev_int(std::distance(_F, _L));
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
if ((base_class::end() == _F)/* || (0 > _M)*/) { MSE_THROW(msevector_range_error("invalid argument - typename base_class::iterator erase(typename base_class::iterator _F, typename base_class::iterator _L) - msevector")); }
typename base_class::iterator retval = base_class::erase(_F, _L);
/*m_debug_size = size();*/
assert((original_size - _M) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
{
if (1 <= _M) {
m_mmitset.invalidate_inclusive_range(d, msev_size_t(d + _M - 1));
}
m_mmitset.shift_inclusive_range(msev_size_t(d + _M), original_size, -_M);
}
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
void clear() {
base_class::clear();
/*m_debug_size = size();*/
m_mmitset.reset();
}
void swap(base_class& _X) {
base_class::swap(_X);
/*m_debug_size = size();*/
m_mmitset.reset();
}
void swap(_Myt& _X) {
swap(static_cast<base_class&>(_X));
m_mmitset.reset();
}
msevector(_XSTD initializer_list<typename base_class::value_type> _Ilist,
const _A& _Al = _A())
: base_class(_Ilist, _Al), m_mmitset(*this) { // construct from initializer_list
/*m_debug_size = size();*/
}
_Myt& operator=(_XSTD initializer_list<typename base_class::value_type> _Ilist) { // assign initializer_list
operator=(static_cast<base_class>(_Ilist));
m_mmitset.reset();
return (*this);
}
void assign(_XSTD initializer_list<typename base_class::value_type> _Ilist) { // assign initializer_list
base_class::assign(_Ilist);
/*m_debug_size = size();*/
m_mmitset.reset();
}
#if defined(GPP4P8_COMPATIBLE)
/* g++4.8 seems to be (incorrectly) using the c++98 version of this insert function instead of the c++11 version. */
/*typename base_class::iterator*/void insert(typename base_class::/*const_*/iterator _Where, _XSTD initializer_list<typename base_class::value_type> _Ilist) { // insert initializer_list
msev_int di = std::distance(base_class::/*c*/begin(), _Where);
msev_size_t d = msev_size_t(di);
if ((0 > di) || (msev_size_t((*this).size()) < di)) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto _M = _Ilist.size();
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
/*auto retval = */base_class::insert(_Where, _Ilist);
/*m_debug_size = size();*/
assert((original_size + _M) == msev_size_t((*this).size()));
/*assert(di == std::distance(base_class::begin(), retval));*/
m_mmitset.shift_inclusive_range(d, original_size, _M);
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
/*return retval;*/
}
#else /*defined(GPP4P8_COMPATIBLE)*/
typename base_class::iterator insert(typename base_class::const_iterator _Where, _XSTD initializer_list<typename base_class::value_type> _Ilist) { // insert initializer_list
if (m_mmitset.is_empty()) {
auto retval = base_class::insert(_Where, _Ilist);
/*m_debug_size = size();*/
return retval;
}
else {
msev_int di = std::distance(base_class::cbegin(), _Where);
msev_size_t d = msev_size_t(di);
if ((0 > di) || ((*this).size() < msev_size_t(di))) { MSE_THROW(msevector_range_error("index out of range - typename base_class::iterator insert() - msevector")); }
auto _M = _Ilist.size();
auto original_size = msev_size_t((*this).size());
auto original_capacity = msev_size_t((*this).capacity());
auto retval = base_class::insert(_Where, _Ilist);
/*m_debug_size = size();*/
assert((original_size + _M) == msev_size_t((*this).size()));
assert(di == std::distance(base_class::begin(), retval));
m_mmitset.shift_inclusive_range(d, original_size, msev_int(_M));
auto new_capacity = msev_size_t((*this).capacity());
bool realloc_occured = (new_capacity != original_capacity);
if (realloc_occured) {
m_mmitset.sync_iterators_to_index();
}
return retval;
}
}
#endif /*defined(GPP4P8_COMPATIBLE)*/
//size_t m_debug_size;
class random_access_const_iterator_base : public std::iterator<std::random_access_iterator_tag, value_type, difference_type, const_pointer, const_reference> {};
class random_access_iterator_base : public std::iterator<std::random_access_iterator_tag, value_type, difference_type, pointer, reference> {};
/* mm_const_iterator_type acts much like a list iterator. */
class mm_const_iterator_type : public random_access_const_iterator_base {
public:
typedef typename base_class::const_iterator::iterator_category iterator_category;
typedef typename base_class::const_iterator::value_type value_type;
//typedef typename base_class::const_iterator::difference_type difference_type;
typedef msev_int difference_type;
typedef difference_type distance_type; // retained
typedef typename base_class::const_iterator::pointer pointer;
typedef typename base_class::const_iterator::pointer const_pointer;
typedef typename base_class::const_iterator::reference reference;
typedef typename base_class::const_reference const_reference;
void reset() { set_to_end_marker(); }
bool points_to_an_item() const {
if (m_points_to_an_item) { assert((1 <= m_owner_cptr->size()) && (m_index < m_owner_cptr->size())); return true; }
else { assert(!((1 <= m_owner_cptr->size()) && (m_index < m_owner_cptr->size()))); return false; }
}
bool points_to_end_marker() const {
if (false == points_to_an_item()) { assert(m_index == m_owner_cptr->size()); return true; }
else { return false; }
}
bool points_to_beginning() const {
if (0 == m_index) { return true; }
else { return false; }
}
/* has_next_item_or_end_marker() is just an alias for points_to_an_item(). */
bool has_next_item_or_end_marker() const { return points_to_an_item(); } //his is
/* has_next() is just an alias for points_to_an_item() that's familiar to java programmers. */
bool has_next() const { return has_next_item_or_end_marker(); }
bool has_previous() const { return (!points_to_beginning()); }
void set_to_beginning() {
m_index = 0;
if (1 <= m_owner_cptr->size()) {
m_points_to_an_item = true;
}
else { assert(false == m_points_to_an_item); }
}
void set_to_end_marker() {
m_index = m_owner_cptr->size();
m_points_to_an_item = false;
}
void set_to_next() {
if (points_to_an_item()) {
m_index += 1;
if (m_owner_cptr->size() <= m_index) {
(*this).m_points_to_an_item = false;
if (m_owner_cptr->size() < m_index) { assert(false); reset(); }
}
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid const_item_pointer - void set_to_next() - mm_const_iterator_type - msevector"));
}
}
void set_to_previous() {
if (has_previous()) {
m_index -= 1;
(*this).m_points_to_an_item = true;
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid const_item_pointer - void set_to_previous() - mm_const_iterator_type - msevector"));
}
}
mm_const_iterator_type& operator ++() { (*this).set_to_next(); return (*this); }
mm_const_iterator_type operator++(int) { mm_const_iterator_type _Tmp = *this; ++*this; return (_Tmp); }
mm_const_iterator_type& operator --() { (*this).set_to_previous(); return (*this); }
mm_const_iterator_type operator--(int) { mm_const_iterator_type _Tmp = *this; --*this; return (_Tmp); }
void advance(difference_type n) {
auto new_index = msev_int(m_index) + n;
if ((0 > new_index) || (m_owner_cptr->size() < msev_size_t(new_index))) {
MSE_THROW(msevector_range_error("index out of range - void advance(difference_type n) - mm_const_iterator_type - msevector"));
}
else {
m_index = msev_size_t(new_index);
if (m_owner_cptr->size() <= m_index) {
(*this).m_points_to_an_item = false;
}
else {
(*this).m_points_to_an_item = true;
}
}
}
void regress(difference_type n) { advance(-n); }
mm_const_iterator_type& operator +=(difference_type n) { (*this).advance(n); return (*this); }
mm_const_iterator_type& operator -=(difference_type n) { (*this).regress(n); return (*this); }
mm_const_iterator_type operator+(difference_type n) const {
mm_const_iterator_type retval(*this);
retval = (*this);
retval.advance(n);
return retval;
}
mm_const_iterator_type operator-(difference_type n) const { return ((*this) + (-n)); }
difference_type operator-(const mm_const_iterator_type &rhs) const {
if ((rhs.m_owner_cptr) != ((*this).m_owner_cptr)) { MSE_THROW(msevector_range_error("invalid argument - difference_type operator-(const mm_const_iterator_type &rhs) const - msevector::mm_const_iterator_type")); }
auto retval = difference_type((*this).m_index) - difference_type(rhs.m_index);
assert(difference_type(m_owner_cptr->size()) >= retval);
return retval;
}
const_reference operator*() const {
return m_owner_cptr->at(msev_as_a_size_t(m_index));
}
const_reference item() const { return operator*(); }
const_reference previous_item() const {
return m_owner_cptr->at(msev_as_a_size_t(m_index - 1));
}
const_pointer operator->() const {
return &(m_owner_cptr->at(msev_as_a_size_t(m_index)));
}
const_reference operator[](difference_type _Off) const { return (*m_owner_cptr).at(msev_as_a_size_t(difference_type(m_index) + _Off)); }
/*
mm_const_iterator_type& operator=(const typename base_class::const_iterator& _Right_cref)
{
msev_int d = std::distance<typename base_class::iterator>(m_owner_cptr->cbegin(), _Right_cref);
if ((0 <= d) && (m_owner_cptr->size() >= d)) {
if (m_owner_cptr->size() == d) {
assert(m_owner_cptr->cend() == _Right_cref);
m_points_to_an_item = false;
} else {
m_points_to_an_item = true;
}
m_index = msev_size_t(d);
base_class::const_iterator::operator=(_Right_cref);
}
else {
MSE_THROW(msevector_range_error("doesn't seem to be a valid assignment value - mm_const_iterator_type& operator=(const typename base_class::const_iterator& _Right_cref) - mm_const_iterator_type - msevector"));
}
return (*this);
}
*/
mm_const_iterator_type& operator=(const mm_const_iterator_type& _Right_cref)
{
if (((*this).m_owner_cptr) == (_Right_cref.m_owner_cptr)) {
assert((*this).m_owner_cptr->size() >= _Right_cref.m_index);
(*this).m_points_to_an_item = _Right_cref.m_points_to_an_item;
(*this).m_index = _Right_cref.m_index;
}
else {
MSE_THROW(msevector_range_error("doesn't seem to be a valid assignment value - mm_const_iterator_type& operator=(const typename base_class::iterator& _Right_cref) - mm_const_iterator_type - msevector"));
}
return (*this);
}
bool operator==(const mm_const_iterator_type& _Right_cref) const {
if (((*this).m_owner_cptr) != (_Right_cref.m_owner_cptr)) { MSE_THROW(msevector_range_error("invalid argument - mm_const_iterator_type& operator==(const mm_const_iterator_type& _Right) - mm_const_iterator_type - msevector")); }
return (_Right_cref.m_index == m_index);
}
bool operator!=(const mm_const_iterator_type& _Right_cref) const { return (!(_Right_cref == (*this))); }
bool operator<(const mm_const_iterator_type& _Right) const {
if (((*this).m_owner_cptr) != (_Right.m_owner_cptr)) { MSE_THROW(msevector_range_error("invalid argument - mm_const_iterator_type& operator<(const mm_const_iterator_type& _Right) - mm_const_iterator_type - msevector")); }
return (m_index < _Right.m_index);
}
bool operator<=(const mm_const_iterator_type& _Right) const { return (((*this) < _Right) || (_Right == (*this))); }
bool operator>(const mm_const_iterator_type& _Right) const { return (!((*this) <= _Right)); }
bool operator>=(const mm_const_iterator_type& _Right) const { return (!((*this) < _Right)); }
void set_to_const_item_pointer(const mm_const_iterator_type& _Right_cref) {
(*this) = _Right_cref;
}
void invalidate_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
(*this).reset();
}
}
void shift_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last, msev_int shift) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
auto new_index = (*this).m_index + shift;
if ((0 > new_index) || (m_owner_cptr->size() < new_index)) {
MSE_THROW(msevector_range_error("void shift_inclusive_range() - mm_const_iterator_type - msevector"));
}
else {
(*this).m_index = msev_size_t(new_index);
(*this).sync_const_iterator_to_index();
}
}
}
msev_size_t position() const {
return m_index;
}
operator typename base_class::const_iterator() const {
typename base_class::const_iterator retval = (*m_owner_cptr).cbegin();
retval += msev_as_a_size_t(m_index);
return retval;
}
/* We actually want to make this constructor private, but doing so seems to break std::make_shared<mm_const_iterator_type>. */
mm_const_iterator_type(const _Myt& owner_cref) : m_owner_cptr(&owner_cref) { set_to_beginning(); }
private:
mm_const_iterator_type(const mm_const_iterator_type& src_cref) : m_owner_cptr(src_cref.m_owner_cptr) { (*this) = src_cref; }
void sync_const_iterator_to_index() {
assert(m_owner_cptr->size() >= (*this).m_index);
}
msev_bool m_points_to_an_item = false;
msev_size_t m_index = 0;
const _Myt* m_owner_cptr = nullptr;
friend class mm_iterator_set_type;
friend class /*_Myt*/msevector<_Ty, _A>;
friend class mm_iterator_type;
};
/* mm_iterator_type acts much like a list iterator. */
class mm_iterator_type : random_access_iterator_base {
public:
typedef typename base_class::iterator::iterator_category iterator_category;
typedef typename base_class::iterator::value_type value_type;
//typedef typename base_class::iterator::difference_type difference_type;
typedef msev_int difference_type;
typedef difference_type distance_type; // retained
typedef typename base_class::iterator::pointer pointer;
typedef typename base_class::iterator::reference reference;
void reset() { set_to_end_marker(); }
bool points_to_an_item() const {
if (m_points_to_an_item) { assert((1 <= m_owner_ptr->size()) && (m_index < m_owner_ptr->size())); return true; }
else { assert(!((1 <= m_owner_ptr->size()) && (m_index < m_owner_ptr->size()))); return false; }
}
bool points_to_end_marker() const {
if (false == points_to_an_item()) { assert(m_index == m_owner_ptr->size()); return true; }
else { return false; }
}
bool points_to_beginning() const {
if (0 == m_index) { return true; }
else { return false; }
}
/* has_next_item_or_end_marker() is just an alias for points_to_an_item(). */
bool has_next_item_or_end_marker() const { return points_to_an_item(); }
/* has_next() is just an alias for points_to_an_item() that's familiar to java programmers. */
bool has_next() const { return has_next_item_or_end_marker(); }
bool has_previous() const { return (!points_to_beginning()); }
void set_to_beginning() {
m_index = 0;
if (1 <= m_owner_ptr->size()) {
m_points_to_an_item = true;
}
else { assert(false == m_points_to_an_item); }
}
void set_to_end_marker() {
m_index = m_owner_ptr->size();
m_points_to_an_item = false;
}
void set_to_next() {
if (points_to_an_item()) {
m_index += 1;
if (m_owner_ptr->size() <= m_index) {
(*this).m_points_to_an_item = false;
if (m_owner_ptr->size() < m_index) { assert(false); reset(); }
}
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid item_pointer - void set_to_next() - mm_const_iterator_type - msevector"));
}
}
void set_to_previous() {
if (has_previous()) {
m_index -= 1;
(*this).m_points_to_an_item = true;
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid item_pointer - void set_to_previous() - mm_iterator_type - msevector"));
}
}
mm_iterator_type& operator ++() { (*this).set_to_next(); return (*this); }
mm_iterator_type operator++(int) { mm_iterator_type _Tmp = *this; ++*this; return (_Tmp); }
mm_iterator_type& operator --() { (*this).set_to_previous(); return (*this); }
mm_iterator_type operator--(int) { mm_iterator_type _Tmp = *this; --*this; return (_Tmp); }
void advance(difference_type n) {
auto new_index = msev_int(m_index) + n;
if ((0 > new_index) || (m_owner_ptr->size() < msev_size_t(new_index))) {
MSE_THROW(msevector_range_error("index out of range - void advance(difference_type n) - mm_iterator_type - msevector"));
}
else {
m_index = msev_size_t(new_index);
if (m_owner_ptr->size() <= m_index) {
(*this).m_points_to_an_item = false;
}
else {
(*this).m_points_to_an_item = true;
}
}
}
void regress(int n) { advance(-n); }
mm_iterator_type& operator +=(difference_type n) { (*this).advance(n); return (*this); }
mm_iterator_type& operator -=(difference_type n) { (*this).regress(n); return (*this); }
mm_iterator_type operator+(difference_type n) const {
mm_iterator_type retval(*this);
retval = (*this);
retval.advance(n);
return retval;
}
mm_iterator_type operator-(difference_type n) const { return ((*this) + (-n)); }
difference_type operator-(const mm_iterator_type& rhs) const {
if ((rhs.m_owner_ptr) != ((*this).m_owner_ptr)) { MSE_THROW(msevector_range_error("invalid argument - difference_type operator-(const mm_iterator_type& rhs) const - msevector::mm_iterator_type")); }
auto retval = difference_type((*this).m_index) - difference_type(rhs.m_index);
assert(difference_type(m_owner_ptr->size()) >= retval);
return retval;
}
reference operator*() const {
return m_owner_ptr->at(msev_as_a_size_t(m_index));
}
reference item() const { return operator*(); }
reference previous_item() const {
return m_owner_ptr->at(msev_as_a_size_t(m_index - 1));
}
pointer operator->() const {
return &(m_owner_ptr->at(msev_as_a_size_t(m_index)));
}
reference operator[](difference_type _Off) const { return (*m_owner_ptr).at(msev_as_a_size_t(difference_type(m_index) + _Off)); }
/*
mm_iterator_type& operator=(const typename base_class::iterator& _Right_cref)
{
msev_int d = std::distance<typename base_class::iterator>(m_owner_ptr->begin(), _Right_cref);
if ((0 <= d) && (m_owner_ptr->size() >= d)) {
if (m_owner_ptr->size() == d) {
assert(m_owner_ptr->end() == _Right_cref);
m_points_to_an_item = false;
} else {
m_points_to_an_item = true;
}
m_index = msev_size_t(d);
base_class::iterator::operator=(_Right_cref);
}
else {
MSE_THROW(msevector_range_error("doesn't seem to be a valid assignment value - mm_iterator_type& operator=(const typename base_class::iterator& _Right_cref) - mm_const_iterator_type - msevector"));
}
return (*this);
}
*/
mm_iterator_type& operator=(const mm_iterator_type& _Right_cref)
{
if (((*this).m_owner_ptr) == (_Right_cref.m_owner_ptr)) {
assert((*this).m_owner_ptr->size() >= _Right_cref.m_index);
(*this).m_points_to_an_item = _Right_cref.m_points_to_an_item;
(*this).m_index = _Right_cref.m_index;
}
else {
MSE_THROW(msevector_range_error("doesn't seem to be a valid assignment value - mm_iterator_type& operator=(const typename base_class::iterator& _Right_cref) - mm_const_iterator_type - msevector"));
}
return (*this);
}
bool operator==(const mm_iterator_type& _Right_cref) const {
if (((*this).m_owner_ptr) != (_Right_cref.m_owner_ptr)) { MSE_THROW(msevector_range_error("invalid argument - mm_iterator_type& operator==(const typename base_class::iterator& _Right) - mm_iterator_type - msevector")); }
return (_Right_cref.m_index == m_index);
}
bool operator!=(const mm_iterator_type& _Right_cref) const { return (!(_Right_cref == (*this))); }
bool operator<(const mm_iterator_type& _Right) const {
if (((*this).m_owner_ptr) != (_Right.m_owner_ptr)) { MSE_THROW(msevector_range_error("invalid argument - mm_iterator_type& operator<(const typename base_class::iterator& _Right) - mm_iterator_type - msevector")); }
return (m_index < _Right.m_index);
}
bool operator<=(const mm_iterator_type& _Right) const { return (((*this) < _Right) || (_Right == (*this))); }
bool operator>(const mm_iterator_type& _Right) const { return (!((*this) <= _Right)); }
bool operator>=(const mm_iterator_type& _Right) const { return (!((*this) < _Right)); }
void set_to_item_pointer(const mm_iterator_type& _Right_cref) {
(*this) = _Right_cref;
}
void invalidate_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
(*this).reset();
}
}
void shift_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last, msev_int shift) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
auto new_index = (*this).m_index + shift;
if ((0 > new_index) || (m_owner_ptr->size() < new_index)) {
MSE_THROW(msevector_range_error("void shift_inclusive_range() - mm_iterator_type - msevector"));
}
else {
(*this).m_index = msev_size_t(new_index);
(*this).sync_iterator_to_index();
}
}
}
msev_size_t position() const {
return m_index;
}
operator mm_const_iterator_type() const {
mm_const_iterator_type retval(*m_owner_ptr);
retval.set_to_beginning();
retval.advance(msev_int(m_index));
return retval;
}
/* We actually want to make this constructor private, but doing so seems to break std::make_shared<mm_iterator_type>. */
mm_iterator_type(_Myt& owner_ref) : m_owner_ptr(&owner_ref) { set_to_beginning(); }
private:
mm_iterator_type(const mm_iterator_type& src_cref) : m_owner_ptr(src_cref.m_owner_ptr) { (*this) = src_cref; }
void sync_iterator_to_index() {
assert(m_owner_ptr->size() >= (*this).m_index);
}
msev_bool m_points_to_an_item = false;
msev_size_t m_index = 0;
_Myt* m_owner_ptr = nullptr;
friend class mm_iterator_set_type;
friend class /*_Myt*/msevector<_Ty, _A>;
};
private:
typedef std::size_t CHashKey1;
class mm_const_iterator_handle_type {
public:
mm_const_iterator_handle_type(const CHashKey1& key_cref, const std::shared_ptr<mm_const_iterator_type>& shptr_cref) : m_shptr(shptr_cref), m_key(key_cref) {}
private:
std::shared_ptr<mm_const_iterator_type> m_shptr;
CHashKey1 m_key;
friend class /*_Myt*/msevector<_Ty, _A>;
friend class mm_iterator_set_type;
};
class mm_iterator_handle_type {
public:
mm_iterator_handle_type(const CHashKey1& key_cref, const std::shared_ptr<mm_iterator_type>& shptr_ref) : m_shptr(shptr_ref), m_key(key_cref) {}
private:
std::shared_ptr<mm_iterator_type> m_shptr;
CHashKey1 m_key;
friend class /*_Myt*/msevector<_Ty, _A>;
friend class mm_iterator_set_type;
};
class mm_iterator_set_type {
public:
class CMMConstIterators : public std::unordered_map<CHashKey1, std::shared_ptr<mm_const_iterator_type>> {};
class CMMIterators : public std::unordered_map<CHashKey1, std::shared_ptr<mm_iterator_type>> {};
class assignable_CMMConstIterators_value_type : public std::pair<CHashKey1, std::shared_ptr<mm_const_iterator_type>> {
public:
assignable_CMMConstIterators_value_type() {}
assignable_CMMConstIterators_value_type(const typename CMMConstIterators::value_type& src) : std::pair<CHashKey1, std::shared_ptr<mm_iterator_type>>(src.first, src.second) {}
assignable_CMMConstIterators_value_type& operator=(const typename CMMConstIterators::value_type& rhs) { (*this).first = rhs.first; (*this).second = rhs.second; return (*this); }
operator typename CMMConstIterators::value_type() const { return CMMConstIterators::value_type((*this).first, (*this).second); }
};
class assignable_CMMIterators_value_type : public std::pair<CHashKey1, std::shared_ptr<mm_iterator_type>> {
public:
assignable_CMMIterators_value_type() {}
assignable_CMMIterators_value_type(const typename CMMIterators::value_type& src) : std::pair<CHashKey1, std::shared_ptr<mm_iterator_type>>(src.first, src.second) {}
assignable_CMMIterators_value_type& operator=(const typename CMMIterators::value_type& rhs) { (*this).first = rhs.first; (*this).second = rhs.second; return (*this); }
operator typename CMMIterators::value_type() const { return CMMIterators::value_type((*this).first, (*this).second); }
};
~mm_iterator_set_type() {
if (!mm_const_fast_mode1()) {
delete m_aux_mm_const_iterator_shptrs_ptr;
}
if (!mm_fast_mode1()) {
delete m_aux_mm_iterator_shptrs_ptr;
}
}
void apply_to_all_mm_const_iterator_shptrs(const std::function<void(std::shared_ptr<mm_const_iterator_type>&)>& func_obj_ref) {
if (!mm_const_fast_mode1()) {
for (auto it = (*m_aux_mm_const_iterator_shptrs_ptr).begin(); (*m_aux_mm_const_iterator_shptrs_ptr).end() != it; it++) {
func_obj_ref((*it).second);
}
}
else {
for (int i = 0; i < m_fm1_num_mm_const_iterators; i += 1) {
func_obj_ref(m_fm1_key_mm_const_it_array[i].second);
}
}
}
void apply_to_all_mm_iterator_shptrs(const std::function<void(std::shared_ptr<mm_iterator_type>&)>& func_obj_ref) {
if (!mm_fast_mode1()) {
for (auto it = (*m_aux_mm_iterator_shptrs_ptr).begin(); (*m_aux_mm_iterator_shptrs_ptr).end() != it; it++) {
func_obj_ref((*it).second);
}
}
else {
for (int i = 0; i < m_fm1_num_mm_iterators; i += 1) {
func_obj_ref(m_fm1_key_mm_it_array[i].second);
}
}
}
mm_iterator_set_type(_Myt& owner_ref) : m_next_available_key(0), m_owner_ptr(&owner_ref) {}
void reset() {
/* We can use "static" here because the lambda function does not capture any parameters. */
static const std::function<void(std::shared_ptr<mm_const_iterator_type>&)> cit_func_obj = [](std::shared_ptr<mm_const_iterator_type>& a) { a->reset(); };
apply_to_all_mm_const_iterator_shptrs(cit_func_obj);
static const std::function<void(std::shared_ptr<mm_iterator_type>&)> it_func_obj = [](std::shared_ptr<mm_iterator_type>& a) { a->reset(); };
apply_to_all_mm_iterator_shptrs(it_func_obj);
}
void sync_iterators_to_index() {
/* No longer used. Relic from when mm_iterator_type contained a "native" iterator. */
/* We can use "static" here because the lambda function does not capture any parameters. */
/*
static const std::function<void(std::shared_ptr<mm_const_iterator_type>&)> cit_func_obj = [](std::shared_ptr<mm_const_iterator_type>& a) { a->sync_const_iterator_to_index(); };
apply_to_all_mm_const_iterator_shptrs(cit_func_obj);
static const std::function<void(std::shared_ptr<mm_iterator_type>&)> it_func_obj = [](std::shared_ptr<mm_iterator_type>& a) { a->sync_iterator_to_index(); };
apply_to_all_mm_iterator_shptrs(it_func_obj);
*/
}
void invalidate_inclusive_range(msev_size_t start_index, msev_size_t end_index) {
const std::function<void(std::shared_ptr<mm_const_iterator_type>&)> cit_func_obj = [start_index, end_index](std::shared_ptr<mm_const_iterator_type>& a) { a->invalidate_inclusive_range(start_index, end_index); };
apply_to_all_mm_const_iterator_shptrs(cit_func_obj);
const std::function<void(std::shared_ptr<mm_iterator_type>&)> it_func_obj = [start_index, end_index](std::shared_ptr<mm_iterator_type>& a) { a->invalidate_inclusive_range(start_index, end_index); };
apply_to_all_mm_iterator_shptrs(it_func_obj);
}
void shift_inclusive_range(msev_size_t start_index, msev_size_t end_index, msev_int shift) {
const std::function<void(std::shared_ptr<mm_const_iterator_type>&)> cit_func_obj = [start_index, end_index, shift](std::shared_ptr<mm_const_iterator_type>& a) { a->shift_inclusive_range(start_index, end_index, shift); };
apply_to_all_mm_const_iterator_shptrs(cit_func_obj);
const std::function<void(std::shared_ptr<mm_iterator_type>&)> it_func_obj = [start_index, end_index, shift](std::shared_ptr<mm_iterator_type>& a) { a->shift_inclusive_range(start_index, end_index, shift); };
apply_to_all_mm_iterator_shptrs(it_func_obj);
}
bool is_empty() const {
if (mm_const_fast_mode1()) {
if (1 <= m_fm1_num_mm_const_iterators) {
return false;
}
}
else {
if (1 <= m_aux_mm_const_iterator_shptrs_ptr->size()) {
return false;
}
}
if (mm_fast_mode1()) {
if (1 <= m_fm1_num_mm_iterators) {
return false;
}
}
else {
if (1 <= m_aux_mm_iterator_shptrs_ptr->size()) {
return false;
}
}
return true;
}
mm_const_iterator_handle_type allocate_new_const_item_pointer() {
//auto shptr = std::shared_ptr<mm_const_iterator_type>(new mm_const_iterator_type(*m_owner_ptr));
auto shptr = std::make_shared<mm_const_iterator_type>(*m_owner_ptr);
auto key = m_next_available_key; m_next_available_key++;
mm_const_iterator_handle_type retval(key, shptr);
typename CMMConstIterators::value_type new_item(key, shptr);
if (!mm_const_fast_mode1()) {
(*m_aux_mm_const_iterator_shptrs_ptr).insert(new_item);
} else {
if (sc_fm1_max_mm_iterators == m_fm1_num_mm_const_iterators) {
/* Too many items. Initiate and switch to slow mode. */
/* Initialize slow storage. */
m_aux_mm_const_iterator_shptrs_ptr = new CMMConstIterators();
/* First copy the items from fast storage to slow storage. */
for (int i = 0; i < sc_fm1_max_mm_iterators; i += 1) {
(*m_aux_mm_const_iterator_shptrs_ptr).insert(m_fm1_key_mm_const_it_array[i]);
}
/* Add the new items to slow storage. */
(*m_aux_mm_const_iterator_shptrs_ptr).insert(new_item);
}
else {
m_fm1_key_mm_const_it_array[m_fm1_num_mm_const_iterators] = new_item;
m_fm1_num_mm_const_iterators += 1;
}
}
return retval;
}
void release_const_item_pointer(mm_const_iterator_handle_type handle) {
if (!mm_const_fast_mode1()) {
auto it = (*m_aux_mm_const_iterator_shptrs_ptr).find(handle.m_key);
if ((*m_aux_mm_const_iterator_shptrs_ptr).end() != it) {
(*m_aux_mm_const_iterator_shptrs_ptr).erase(it);
}
else {
/* Do we need to throw here? */
MSE_THROW(msevector_range_error("invalid handle - void release_aux_mm_const_iterator(mm_const_iterator_handle_type handle) - msevector::mm_iterator_set_type"));
}
}
else {
int found_index = -1;
for (int i = 0; i < m_fm1_num_mm_const_iterators; i += 1) {
if (handle.m_key == m_fm1_key_mm_const_it_array[i].first) {
found_index = i;
break;
}
}
if (0 <= found_index) {
m_fm1_num_mm_const_iterators -= 1;
assert(0 <= m_fm1_num_mm_const_iterators);
for (int j = found_index; j < m_fm1_num_mm_const_iterators; j += 1) {
m_fm1_key_mm_const_it_array[j] = m_fm1_key_mm_const_it_array[j + 1];
}
}
else {
/* Do we need to throw here? */
MSE_THROW(msevector_range_error("invalid handle - void release_aux_mm_const_iterator(mm_const_iterator_handle_type handle) - msevector::mm_iterator_set_type"));
}
}
}
mm_iterator_handle_type allocate_new_item_pointer() {
//auto shptr = std::shared_ptr<mm_iterator_type>(new mm_iterator_type(*m_owner_ptr));
auto shptr = std::make_shared<mm_iterator_type>(*m_owner_ptr);
auto key = m_next_available_key; m_next_available_key++;
mm_iterator_handle_type retval(key, shptr);
typename CMMIterators::value_type new_item(key, shptr);
if (!mm_fast_mode1()) {
(*m_aux_mm_iterator_shptrs_ptr).insert(new_item);
}
else {
if (sc_fm1_max_mm_iterators == m_fm1_num_mm_iterators) {
/* Too many items. Initiate and switch to slow mode. */
/* Initialize slow storage. */
m_aux_mm_iterator_shptrs_ptr = new CMMIterators();
/* First copy the items from fast storage to slow storage. */
for (int i = 0; i < sc_fm1_max_mm_iterators; i += 1) {
(*m_aux_mm_iterator_shptrs_ptr).insert(m_fm1_key_mm_it_array[i]);
}
/* Add the new items to slow storage. */
(*m_aux_mm_iterator_shptrs_ptr).insert(new_item);
}
else {
m_fm1_key_mm_it_array[m_fm1_num_mm_iterators] = new_item;
m_fm1_num_mm_iterators += 1;
}
}
return retval;
}
void release_item_pointer(mm_iterator_handle_type handle) {
if (!mm_fast_mode1()) {
auto it = (*m_aux_mm_iterator_shptrs_ptr).find(handle.m_key);
if ((*m_aux_mm_iterator_shptrs_ptr).end() != it) {
(*m_aux_mm_iterator_shptrs_ptr).erase(it);
}
else {
/* Do we need to throw here? */
MSE_THROW(msevector_range_error("invalid handle - void release_aux_mm_iterator(mm_iterator_handle_type handle) - msevector::mm_iterator_set_type"));
}
}
else {
int found_index = -1;
for (int i = 0; i < m_fm1_num_mm_iterators; i += 1) {
if (handle.m_key == m_fm1_key_mm_it_array[i].first) {
found_index = i;
break;
}
}
if (0 <= found_index) {
m_fm1_num_mm_iterators -= 1;
assert(0 <= m_fm1_num_mm_iterators);
for (int j = found_index; j < m_fm1_num_mm_iterators; j += 1) {
m_fm1_key_mm_it_array[j] = m_fm1_key_mm_it_array[j + 1];
}
}
else {
/* Do we need to throw here? */
MSE_THROW(msevector_range_error("invalid handle - void release_aux_mm_iterator(mm_iterator_handle_type handle) - msevector::mm_iterator_set_type"));
}
}
}
void release_all_item_pointers() {
if (!mm_fast_mode1()) {
(*m_aux_mm_iterator_shptrs_ptr).clear();
}
else {
for (int i = 0; i < m_fm1_num_mm_iterators; i += 1) {
m_fm1_key_mm_it_array[i] = assignable_CMMIterators_value_type();
}
m_fm1_num_mm_iterators = 0;
}
}
mm_const_iterator_type &const_item_pointer(mm_const_iterator_handle_type handle) const {
return (*(handle.m_shptr));
}
mm_iterator_type &item_pointer(mm_iterator_handle_type handle) {
return (*(handle.m_shptr));
}
private:
void release_all_const_item_pointers() {
if (!mm_const_fast_mode1()) {
(*m_aux_mm_const_iterator_shptrs_ptr).clear();
}
else {
for (int i = 0; i < m_fm1_num_mm_const_iterators; i += 1) {
m_fm1_key_mm_const_it_array[i] = assignable_CMMConstIterators_value_type();
}
m_fm1_num_mm_const_iterators = 0;
}
}
mm_iterator_set_type& operator=(const mm_iterator_set_type& src_cref) {
/* This is a special type of class. The state (i.e. member values) of an object of this class is specific to (and only
valid for) the particular instance of the object (or the object of which it is a member). So the correct state of a new
copy of this type of object is not a copy of the state, but rather the state of a new object (which is just the default
initialization state). */
(*this).reset();
return (*this);
}
mm_iterator_set_type& operator=(mm_iterator_set_type&& src) { /* see above */ (*this).reset(); return (*this); }
mm_iterator_set_type(const mm_iterator_set_type& src) { /* see above */ }
mm_iterator_set_type(const mm_iterator_set_type&& src) { /* see above */ }
CHashKey1 m_next_available_key = 0;
static const int sc_fm1_max_mm_iterators = 6/*arbitrary*/;
bool mm_const_fast_mode1() const { return (nullptr == m_aux_mm_const_iterator_shptrs_ptr); }
int m_fm1_num_mm_const_iterators = 0;
assignable_CMMConstIterators_value_type m_fm1_key_mm_const_it_array[sc_fm1_max_mm_iterators];
CMMConstIterators* m_aux_mm_const_iterator_shptrs_ptr = nullptr;
bool mm_fast_mode1() const { return (nullptr == m_aux_mm_iterator_shptrs_ptr); }
int m_fm1_num_mm_iterators = 0;
assignable_CMMIterators_value_type m_fm1_key_mm_it_array[sc_fm1_max_mm_iterators];
CMMIterators* m_aux_mm_iterator_shptrs_ptr = nullptr;
_Myt* m_owner_ptr = nullptr;
friend class /*_Myt*/msevector<_Ty, _A>;
};
mutable mm_iterator_set_type m_mmitset;
public:
mm_const_iterator_type &const_item_pointer(mm_const_iterator_handle_type handle) const {
return m_mmitset.const_item_pointer(handle);
}
mm_iterator_type &item_pointer(mm_iterator_handle_type handle) {
return m_mmitset.item_pointer(handle);
}
private:
mm_const_iterator_handle_type allocate_new_const_item_pointer() const { return m_mmitset.allocate_new_const_item_pointer(); }
void release_const_item_pointer(mm_const_iterator_handle_type handle) const { m_mmitset.release_const_item_pointer(handle); }
void release_all_const_item_pointers() const { m_mmitset.release_all_const_item_pointers(); }
mm_iterator_handle_type allocate_new_item_pointer() const { return m_mmitset.allocate_new_item_pointer(); }
void release_item_pointer(mm_iterator_handle_type handle) const { m_mmitset.release_item_pointer(handle); }
void release_all_item_pointers() const { m_mmitset.release_all_item_pointers(); }
public:
class cipointer : public random_access_const_iterator_base {
public:
typedef typename mm_const_iterator_type::iterator_category iterator_category;
typedef typename mm_const_iterator_type::value_type value_type;
typedef typename mm_const_iterator_type::difference_type difference_type;
typedef difference_type distance_type; // retained
typedef typename mm_const_iterator_type::pointer pointer;
typedef typename mm_const_iterator_type::const_pointer const_pointer;
typedef typename mm_const_iterator_type::reference reference;
typedef typename mm_const_iterator_type::const_reference const_reference;
cipointer(const _Myt& owner_cref) : m_owner_cptr(&owner_cref) {
mm_const_iterator_handle_type handle = m_owner_cptr->allocate_new_const_item_pointer();
m_handle_shptr = std::make_shared<mm_const_iterator_handle_type>(handle);
}
cipointer(const cipointer& src_cref) : m_owner_cptr(src_cref.m_owner_cptr) {
mm_const_iterator_handle_type handle = m_owner_cptr->allocate_new_const_item_pointer();
m_handle_shptr = std::make_shared<mm_const_iterator_handle_type>(handle);
const_item_pointer() = src_cref.const_item_pointer();
}
~cipointer() {
m_owner_cptr->release_const_item_pointer(*m_handle_shptr);
}
mm_const_iterator_type& const_item_pointer() const { return m_owner_cptr->const_item_pointer(*m_handle_shptr); }
mm_const_iterator_type& cip() const { return const_item_pointer(); }
//const mm_const_iterator_handle_type& handle() const { return (*m_handle_shptr); }
void reset() { const_item_pointer().reset(); }
bool points_to_an_item() const { return const_item_pointer().points_to_an_item(); }
bool points_to_end_marker() const { return const_item_pointer().points_to_end_marker(); }
bool points_to_beginning() const { return const_item_pointer().points_to_beginning(); }
/* has_next_item_or_end_marker() is just an alias for points_to_an_item(). */
bool has_next_item_or_end_marker() const { return const_item_pointer().has_next_item_or_end_marker(); }
/* has_next() is just an alias for points_to_an_item() that's familiar to java programmers. */
bool has_next() const { return const_item_pointer().has_next(); }
bool has_previous() const { return const_item_pointer().has_previous(); }
void set_to_beginning() { const_item_pointer().set_to_beginning(); }
void set_to_end_marker() { const_item_pointer().set_to_end_marker(); }
void set_to_next() { const_item_pointer().set_to_next(); }
void set_to_previous() { const_item_pointer().set_to_previous(); }
cipointer& operator ++() { const_item_pointer().operator ++(); return (*this); }
cipointer operator++(int) { cipointer _Tmp = *this; ++*this; return (_Tmp); }
cipointer& operator --() { const_item_pointer().operator --(); return (*this); }
cipointer operator--(int) { cipointer _Tmp = *this; --*this; return (_Tmp); }
void advance(difference_type n) { const_item_pointer().advance(n); }
void regress(difference_type n) { const_item_pointer().regress(n); }
cipointer& operator +=(difference_type n) { const_item_pointer().operator +=(n); return (*this); }
cipointer& operator -=(difference_type n) { const_item_pointer().operator -=(n); return (*this); }
cipointer operator+(difference_type n) const { auto retval = (*this); retval += n; return retval; }
cipointer operator-(difference_type n) const { return ((*this) + (-n)); }
difference_type operator-(const cipointer& _Right_cref) const { return const_item_pointer() - (_Right_cref.const_item_pointer()); }
const_reference operator*() const { return const_item_pointer().operator*(); }
const_reference item() const { return operator*(); }
const_reference previous_item() const { return const_item_pointer().previous_item(); }
const_pointer operator->() const { return const_item_pointer().operator->(); }
const_reference operator[](difference_type _Off) const { return const_item_pointer()[_Off]; }
cipointer& operator=(const cipointer& _Right_cref) { const_item_pointer().operator=(_Right_cref.const_item_pointer()); return (*this); }
bool operator==(const cipointer& _Right_cref) const { return const_item_pointer().operator==(_Right_cref.const_item_pointer()); }
bool operator!=(const cipointer& _Right_cref) const { return (!(_Right_cref == (*this))); }
bool operator<(const cipointer& _Right) const { return (const_item_pointer() < _Right.const_item_pointer()); }
bool operator<=(const cipointer& _Right) const { return (const_item_pointer() <= _Right.const_item_pointer()); }
bool operator>(const cipointer& _Right) const { return (const_item_pointer() > _Right.const_item_pointer()); }
bool operator>=(const cipointer& _Right) const { return (const_item_pointer() >= _Right.const_item_pointer()); }
void set_to_const_item_pointer(const cipointer& _Right_cref) { const_item_pointer().set_to_const_item_pointer(_Right_cref.const_item_pointer()); }
msev_size_t position() const { return const_item_pointer().position(); }
private:
const _Myt* m_owner_cptr = nullptr;
std::shared_ptr<mm_const_iterator_handle_type> m_handle_shptr;
friend class /*_Myt*/msevector<_Ty, _A>;
};
class ipointer : public random_access_iterator_base {
public:
typedef typename mm_iterator_type::iterator_category iterator_category;
typedef typename mm_iterator_type::value_type value_type;
typedef typename mm_iterator_type::difference_type difference_type;
typedef difference_type distance_type; // retained
typedef typename mm_iterator_type::pointer pointer;
typedef typename mm_iterator_type::reference reference;
ipointer(_Myt& owner_ref) : m_owner_ptr(&owner_ref) {
mm_iterator_handle_type handle = m_owner_ptr->allocate_new_item_pointer();
m_handle_shptr = std::make_shared<mm_iterator_handle_type>(handle);
}
ipointer(const ipointer& src_cref) : m_owner_ptr(src_cref.m_owner_ptr) {
mm_iterator_handle_type handle = m_owner_ptr->allocate_new_item_pointer();
m_handle_shptr = std::make_shared<mm_iterator_handle_type>(handle);
item_pointer() = src_cref.item_pointer();
}
~ipointer() {
m_owner_ptr->release_item_pointer(*m_handle_shptr);
}
mm_iterator_type& item_pointer() const { return m_owner_ptr->item_pointer(*m_handle_shptr); }
mm_iterator_type& ip() const { return item_pointer(); }
//const mm_iterator_handle_type& handle() const { return (*m_handle_shptr); }
operator cipointer() const {
cipointer retval(*m_owner_ptr);
retval.const_item_pointer().set_to_beginning();
retval.const_item_pointer().advance(msev_int(item_pointer().position()));
return retval;
}
void reset() { item_pointer().reset(); }
bool points_to_an_item() const { return item_pointer().points_to_an_item(); }
bool points_to_end_marker() const { return item_pointer().points_to_end_marker(); }
bool points_to_beginning() const { return item_pointer().points_to_beginning(); }
/* has_next_item_or_end_marker() is just an alias for points_to_an_item(). */
bool has_next_item_or_end_marker() const { return item_pointer().has_next_item_or_end_marker(); }
/* has_next() is just an alias for points_to_an_item() that's familiar to java programmers. */
bool has_next() const { return item_pointer().has_next(); }
bool has_previous() const { return item_pointer().has_previous(); }
void set_to_beginning() { item_pointer().set_to_beginning(); }
void set_to_end_marker() { item_pointer().set_to_end_marker(); }
void set_to_next() { item_pointer().set_to_next(); }
void set_to_previous() { item_pointer().set_to_previous(); }
ipointer& operator ++() { item_pointer().operator ++(); return (*this); }
ipointer operator++(int) { ipointer _Tmp = *this; ++*this; return (_Tmp); }
ipointer& operator --() { item_pointer().operator --(); return (*this); }
ipointer operator--(int) { ipointer _Tmp = *this; --*this; return (_Tmp); }
void advance(difference_type n) { item_pointer().advance(n); }
void regress(difference_type n) { item_pointer().regress(n); }
ipointer& operator +=(difference_type n) { item_pointer().operator +=(n); return (*this); }
ipointer& operator -=(difference_type n) { item_pointer().operator -=(n); return (*this); }
ipointer operator+(difference_type n) const { auto retval = (*this); retval += n; return retval; }
ipointer operator-(difference_type n) const { return ((*this) + (-n)); }
difference_type operator-(const ipointer& _Right_cref) const { return item_pointer() - (_Right_cref.item_pointer()); }
reference operator*() const { return item_pointer().operator*(); }
reference item() const { return operator*(); }
reference previous_item() const { return item_pointer().previous_item(); }
pointer operator->() const { return item_pointer().operator->(); }
reference operator[](difference_type _Off) const { return item_pointer()[_Off]; }
ipointer& operator=(const ipointer& _Right_cref) { item_pointer().operator=(_Right_cref.item_pointer()); return (*this); }
bool operator==(const ipointer& _Right_cref) const { return item_pointer().operator==(_Right_cref.item_pointer()); }
bool operator!=(const ipointer& _Right_cref) const { return (!(_Right_cref == (*this))); }
bool operator<(const ipointer& _Right) const { return (item_pointer() < _Right.item_pointer()); }
bool operator<=(const ipointer& _Right) const { return (item_pointer() <= _Right.item_pointer()); }
bool operator>(const ipointer& _Right) const { return (item_pointer() > _Right.item_pointer()); }
bool operator>=(const ipointer& _Right) const { return (item_pointer() >= _Right.item_pointer()); }
void set_to_item_pointer(const ipointer& _Right_cref) { item_pointer().set_to_item_pointer(_Right_cref.item_pointer()); }
msev_size_t position() const { return item_pointer().position(); }
private:
_Myt* m_owner_ptr = nullptr;
std::shared_ptr<mm_iterator_handle_type> m_handle_shptr;
friend class /*_Myt*/msevector<_Ty, _A>;
};
ipointer ibegin() { // return ipointer for beginning of mutable sequence
ipointer retval(*this);
retval.set_to_beginning();
return retval;
}
cipointer ibegin() const { // return ipointer for beginning of nonmutable sequence
cipointer retval(*this);
retval.set_to_beginning();
return retval;
}
ipointer iend() { // return ipointer for end of mutable sequence
ipointer retval(*this);
retval.set_to_end_marker();
return retval;
}
cipointer iend() const { // return ipointer for end of nonmutable sequence
cipointer retval(*this);
retval.set_to_end_marker();
return retval;
}
cipointer cibegin() const { // return ipointer for beginning of nonmutable sequence
cipointer retval(*this);
retval.set_to_beginning();
return retval;
}
cipointer ciend() const { // return ipointer for end of nonmutable sequence
cipointer retval(*this);
retval.set_to_end_marker();
return retval;
}
msevector(const cipointer &start, const cipointer &end, const _A& _Al = _A())
: base_class(_Al), m_mmitset(*this) {
/*m_debug_size = size();*/
assign(start, end);
}
void assign(const mm_const_iterator_type &start, const mm_const_iterator_type &end) {
if (start.m_owner_cptr != end.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void assign(const mm_const_iterator_type &start, const mm_const_iterator_type &end) - msevector")); }
if (start > end) { MSE_THROW(msevector_range_error("invalid arguments - void assign(const mm_const_iterator_type &start, const mm_const_iterator_type &end) - msevector")); }
typename base_class::const_iterator _F = start;
typename base_class::const_iterator _L = end;
(*this).assign(_F, _L);
}
void assign_inclusive(const mm_const_iterator_type &first, const mm_const_iterator_type &last) {
auto end = last;
end++; // this should include some checks
(*this).assign(first, end);
}
void assign(const cipointer &start, const cipointer &end) {
assign(start.const_item_pointer(), end.const_item_pointer());
}
void assign_inclusive(const cipointer &first, const cipointer &last) {
assign_inclusive(first.const_item_pointer(), last.const_item_pointer());
}
void insert_before(const mm_const_iterator_type &pos, size_type _M, const _Ty& _X) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before() - msevector")); }
typename base_class::const_iterator _P = pos;
(*this).insert(_P, _M, _X);
}
void insert_before(const mm_const_iterator_type &pos, _Ty&& _X) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before() - msevector")); }
typename base_class::const_iterator _P = pos;
(*this).insert(_P, 1, std::move(_X));
}
void insert_before(const mm_const_iterator_type &pos, const _Ty& _X = _Ty()) { (*this).insert(pos, 1, _X); }
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
void insert_before(const mm_const_iterator_type &pos, const _Iter &start, const _Iter &end) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before() - msevector")); }
//if (start.m_owner_cptr != end.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before(const mm_const_iterator_type &pos, const mm_const_iterator_type &start, const mm_const_iterator_type &end) - msevector")); }
typename base_class::const_iterator _P = pos;
(*this).insert(_P, start, end);
}
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
void insert_before_inclusive(const mm_const_iterator_type &pos, const _Iter &first, const _Iter &last) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before() - msevector")); }
if (first.m_owner_cptr != last.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before_inclusive(const mm_const_iterator_type &pos, const mm_const_iterator_type &first, const mm_const_iterator_type &last) - msevector")); }
if (!(last.points_to_item())) { MSE_THROW(msevector_range_error("invalid argument - void insert_before_inclusive(const mm_const_iterator_type &pos, const mm_const_iterator_type &first, const mm_const_iterator_type &last) - msevector")); }
typename base_class::const_iterator _P = pos;
auto _L = last;
_L++;
(*this).insert(_P, first, _L);
}
void insert_before(const mm_const_iterator_type &pos, _XSTD initializer_list<typename base_class::value_type> _Ilist) { // insert initializer_list
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before() - msevector")); }
typename base_class::const_iterator _P = pos;
(*this).insert(_P, _Ilist);
}
ipointer insert_before(const cipointer &pos, size_type _M, const _Ty& _X) {
msev_size_t original_pos = pos.position();
insert_before(pos.const_item_pointer(), _M, _X);
ipointer retval(*this); retval.advance(msev_int(original_pos));
return retval;
}
ipointer insert_before(const cipointer &pos, _Ty&& _X) {
msev_size_t original_pos = pos.position();
insert_before(pos.const_item_pointer(), std::move(_X));
ipointer retval(*this); retval.advance(msev_int(original_pos));
return retval;
}
ipointer insert_before(const cipointer &pos, const _Ty& _X = _Ty()) { return insert_before(pos, 1, _X); }
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
ipointer insert_before(const cipointer &pos, const _Iter &start, const _Iter &end) {
msev_size_t original_pos = pos.position();
insert_before(pos.const_item_pointer(), start, end);
ipointer retval(*this); retval.advance(msev_int(original_pos));
return retval;
}
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
ipointer insert_before_inclusive(const cipointer &pos, const _Iter &first, const _Iter &last) {
auto end = last; end++;
return insert_before(pos, first, end);
}
ipointer insert_before(const cipointer &pos, _XSTD initializer_list<typename base_class::value_type> _Ilist) { // insert initializer_list
msev_size_t original_pos = pos.position();
(*this).insert_before(pos.const_item_pointer(), _Ilist);
ipointer retval(*this); retval.advance(msev_int(original_pos));
return retval;
}
void insert_before(msev_size_t pos, _Ty&& _X) {
typename base_class::const_iterator _P = (*this).begin() + msev_as_a_size_t(pos);
(*this).insert(_P, std::move(_X));
}
void insert_before(msev_size_t pos, const _Ty& _X = _Ty()) {
typename base_class::const_iterator _P = (*this).begin() + msev_as_a_size_t(pos);
(*this).insert(_P, _X);
}
void insert_before(msev_size_t pos, size_t _M, const _Ty& _X) {
typename base_class::const_iterator _P = (*this).begin() + msev_as_a_size_t(pos);
(*this).insert(_P, _M, _X);
}
void insert_before(msev_size_t pos, _XSTD initializer_list<typename base_class::value_type> _Ilist) { // insert initializer_list
typename base_class::const_iterator _P = (*this).begin() + msev_as_a_size_t(pos);
(*this).insert(_P, _Ilist);
}
/* These insert() functions are just aliases for their corresponding insert_before() functions. */
ipointer insert(const cipointer &pos, size_type _M, const _Ty& _X) { return insert_before(pos, _M, _X); }
ipointer insert(const cipointer &pos, _Ty&& _X) { return insert_before(pos, std::move(_X)); }
ipointer insert(const cipointer &pos, const _Ty& _X = _Ty()) { return insert_before(pos, _X); }
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
ipointer insert(const cipointer &pos, const _Iter &start, const _Iter &end) { return insert_before(pos, start, end); }
ipointer insert(const cipointer &pos, _XSTD initializer_list<typename base_class::value_type> _Ilist) { return insert_before(pos, _Ilist); }
template<class ..._Valty>
#if !(defined(GPP4P8_COMPATIBLE))
void emplace(const mm_const_iterator_type &pos, _Valty&& ..._Val)
{ // insert by moving _Val at pos
#else /*!(defined(GPP4P8_COMPATIBLE))*/
void emplace(const mm_iterator_type &pos, _Valty&& ..._Val)
{ // insert by moving _Val at pos
#endif /*!(defined(GPP4P8_COMPATIBLE))*/
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void emplace() - msevector")); }
typename base_class::const_iterator _P = pos;
auto retval = base_class::emplace(_P, std::forward<_Valty>(_Val)...);
}
template<class ..._Valty>
#if !(defined(GPP4P8_COMPATIBLE))
ipointer emplace(const cipointer &pos, _Valty&& ..._Val)
{ // insert by moving _Val at pos
#else /*!(defined(GPP4P8_COMPATIBLE))*/
ipointer emplace(const ipointer &pos, _Valty&& ..._Val)
{ // insert by moving _Val at pos
#endif /*!(defined(GPP4P8_COMPATIBLE))*/
msev_size_t original_pos = pos.position();
(*this).emplace(pos.const_item_pointer(), std::forward<_Valty>(_Val)...);
ipointer retval(*this); retval.advance(msev_int(original_pos));
return retval;
}
void erase(const mm_const_iterator_type &pos) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
typename base_class::const_iterator _P = pos;
(*this).erase(_P);
}
void erase(const mm_const_iterator_type &start, const mm_const_iterator_type &end) {
if (start.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
if (end.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
typename base_class::const_iterator _F = start;
typename base_class::const_iterator _L = end;
(*this).erase(_F, _L);
}
void erase_inclusive(const mm_const_iterator_type &first, const mm_const_iterator_type &last) {
if (first.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase_inclusive() - msevector")); }
if (last.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase_inclusive() - msevector")); }
if (!(last.points_to_item())) { MSE_THROW(msevector_range_error("invalid argument - void erase_inclusive() - msevector")); }
typename base_class::const_iterator _F = first;
typename base_class::const_iterator _L = last;
_L++;
(*this).erase(_F, _L);
}
ipointer erase(const cipointer &pos) {
auto retval_pos = pos;
retval_pos.set_to_next();
erase(pos.const_item_pointer());
ipointer retval = (*this).ibegin();
retval.advance(msev_int(retval_pos.position()));
return retval;
}
ipointer erase(const cipointer &start, const cipointer &end) {
auto retval_pos = end;
retval_pos.set_to_next();
erase(start.const_item_pointer(), end.const_item_pointer());
ipointer retval = (*this).ibegin();
retval.advance(msev_int(retval_pos.position()));
return retval;
}
ipointer erase_inclusive(const cipointer &first, const cipointer &last) {
auto end = last; end.set_to_next();
return erase(first, end);
}
void erase_previous_item(const mm_const_iterator_type &pos) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase_previous_item() - msevector")); }
if (!(pos.has_previous())) { MSE_THROW(msevector_range_error("invalid arguments - void erase_previous_item() - msevector")); }
typename base_class::const_iterator _P = pos;
_P--;
(*this).erase(_P);
}
ipointer erase_previous_item(const cipointer &pos) {
erase_previous_item(pos.const_item_pointer());
ipointer retval = (*this).ibegin();
retval.advance(pos.position());
return retval;
}
/* ss_const_iterator_type is a bounds checked iterator. */
class ss_const_iterator_type : public random_access_const_iterator_base {
public:
typedef typename base_class::const_iterator::iterator_category iterator_category;
typedef typename base_class::const_iterator::value_type value_type;
//typedef typename base_class::const_iterator::difference_type difference_type;
typedef typename _Myt::difference_type difference_type;
typedef difference_type distance_type; // retained
typedef typename base_class::const_iterator::pointer pointer;
typedef typename base_class::const_pointer const_pointer;
typedef typename base_class::const_iterator::reference reference;
typedef typename base_class::const_reference const_reference;
ss_const_iterator_type() {}
void assert_valid_index() const {
if (m_owner_cptr->size() < m_index) { MSE_THROW(msevector_range_error("invalid index - void assert_valid_index() const - ss_const_iterator_type - msevector")); }
}
void reset() { set_to_end_marker(); }
bool points_to_an_item() const {
if (m_owner_cptr->size() > m_index) { return true; }
else {
if (m_index == m_owner_cptr->size()) { return false; }
else { MSE_THROW(msevector_range_error("attempt to use invalid ss_const_iterator_type - bool points_to_an_item() const - ss_const_iterator_type - msevector")); }
}
}
bool points_to_end_marker() const {
if (false == points_to_an_item()) {
assert(m_index == m_owner_cptr->size());
return true;
}
else { return false; }
}
bool points_to_beginning() const {
if (0 == m_index) { return true; }
else { return false; }
}
/* has_next_item_or_end_marker() is just an alias for points_to_an_item(). */
bool has_next_item_or_end_marker() const { return points_to_an_item(); }
/* has_next() is just an alias for points_to_an_item() that's familiar to java programmers. */
bool has_next() const { return has_next_item_or_end_marker(); }
bool has_previous() const {
if (m_owner_cptr->size() < m_index) {
MSE_THROW(msevector_range_error("attempt to use invalid ss_const_iterator_type - bool has_previous() const - ss_const_iterator_type - msevector"));
}
else if (1 <= m_index) {
return true;
}
else {
return false;
}
}
void set_to_beginning() {
m_index = 0;
}
void set_to_end_marker() {
m_index = m_owner_cptr->size();
}
void set_to_next() {
if (points_to_an_item()) {
m_index += 1;
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid const_item_pointer - void set_to_next() - ss_const_iterator_type - msevector"));
}
}
void set_to_previous() {
if (has_previous()) {
m_index -= 1;
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid const_item_pointer - void set_to_previous() - ss_const_iterator_type - msevector"));
}
}
ss_const_iterator_type& operator ++() { (*this).set_to_next(); return (*this); }
ss_const_iterator_type operator++(int) { ss_const_iterator_type _Tmp = *this; (*this).set_to_next(); return (_Tmp); }
ss_const_iterator_type& operator --() { (*this).set_to_previous(); return (*this); }
ss_const_iterator_type operator--(int) { ss_const_iterator_type _Tmp = *this; (*this).set_to_previous(); return (_Tmp); }
void advance(difference_type n) {
auto new_index = msev_int(m_index) + n;
if ((0 > new_index) || (m_owner_cptr->size() < msev_size_t(new_index))) {
MSE_THROW(msevector_range_error("index out of range - void advance(difference_type n) - ss_const_iterator_type - msevector"));
}
else {
m_index = msev_size_t(new_index);
}
}
void regress(difference_type n) { advance(-n); }
ss_const_iterator_type& operator +=(difference_type n) { (*this).advance(n); return (*this); }
ss_const_iterator_type& operator -=(difference_type n) { (*this).regress(n); return (*this); }
ss_const_iterator_type operator+(difference_type n) const {
ss_const_iterator_type retval; retval.m_owner_cptr = m_owner_cptr;
retval = (*this);
retval.advance(n);
return retval;
}
ss_const_iterator_type operator-(difference_type n) const { return ((*this) + (-n)); }
difference_type operator-(const ss_const_iterator_type &rhs) const {
if (rhs.m_owner_cptr != (*this).m_owner_cptr) { MSE_THROW(msevector_range_error("invalid argument - difference_type operator-(const ss_const_iterator_type &rhs) const - msevector::ss_const_iterator_type")); }
auto retval = difference_type((*this).m_index) - difference_type(rhs.m_index);
assert(difference_type((*m_owner_cptr).size()) >= retval);
return retval;
}
const_reference operator*() const {
return (*m_owner_cptr).at(msev_as_a_size_t((*this).m_index));
}
const_reference item() const { return operator*(); }
const_reference previous_item() const {
return m_owner_cptr->at(msev_as_a_size_t(m_index - 1));
}
const_pointer operator->() const {
return &((*m_owner_cptr).at(msev_as_a_size_t((*this).m_index)));
}
const_reference operator[](difference_type _Off) const { return (*m_owner_cptr).at(msev_as_a_size_t(difference_type(m_index) + _Off)); }
/*
ss_const_iterator_type& operator=(const typename base_class::const_iterator& _Right_cref)
{
msev_int d = std::distance<typename base_class::iterator>(m_owner_cptr->cbegin(), _Right_cref);
if ((0 <= d) && (m_owner_cptr->size() >= d)) {
if (m_owner_cptr->size() == d) {
assert(m_owner_cptr->cend() == _Right_cref);
}
m_index = msev_size_t(d);
base_class::const_iterator::operator=(_Right_cref);
}
else {
MSE_THROW(msevector_range_error("doesn't seem to be a valid assignment value - ss_const_iterator_type& operator=(const typename base_class::const_iterator& _Right_cref) - ss_const_iterator_type - msevector"));
}
return (*this);
}
*/
ss_const_iterator_type& operator=(const ss_const_iterator_type& _Right_cref) {
((*this).m_owner_cptr) = _Right_cref.m_owner_cptr;
(*this).m_index = _Right_cref.m_index;
return (*this);
}
bool operator==(const ss_const_iterator_type& _Right_cref) const {
if (this->m_owner_cptr != _Right_cref.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid argument - ss_const_iterator_type& operator==(const ss_const_iterator_type& _Right) - ss_const_iterator_type - msevector")); }
return (_Right_cref.m_index == m_index);
}
bool operator!=(const ss_const_iterator_type& _Right_cref) const { return (!(_Right_cref == (*this))); }
bool operator<(const ss_const_iterator_type& _Right) const {
if (this->m_owner_cptr != _Right.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid argument - ss_const_iterator_type& operator<(const ss_const_iterator_type& _Right) - ss_const_iterator_type - msevector")); }
return (m_index < _Right.m_index);
}
bool operator<=(const ss_const_iterator_type& _Right) const { return (((*this) < _Right) || (_Right == (*this))); }
bool operator>(const ss_const_iterator_type& _Right) const { return (!((*this) <= _Right)); }
bool operator>=(const ss_const_iterator_type& _Right) const { return (!((*this) < _Right)); }
void set_to_const_item_pointer(const ss_const_iterator_type& _Right_cref) {
(*this) = _Right_cref;
}
void invalidate_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
(*this).reset();
}
}
void shift_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last, msev_int shift) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
auto new_index = (*this).m_index + shift;
if ((0 > new_index) || (m_owner_cptr->size() < new_index)) {
MSE_THROW(msevector_range_error("void shift_inclusive_range() - ss_const_iterator_type - msevector"));
}
else {
(*this).m_index = msev_size_t(new_index);
(*this).sync_const_iterator_to_index();
}
}
}
msev_size_t position() const {
return m_index;
}
operator typename base_class::const_iterator() const {
typename base_class::const_iterator retval = (*m_owner_cptr).cbegin();
retval += msev_as_a_size_t(m_index);
return retval;
}
private:
void sync_const_iterator_to_index() {
assert(m_owner_cptr->size() >= (*this).m_index);
//base_class::const_iterator::operator=(m_owner_cptr->cbegin());
//base_class::const_iterator::operator+=(msev_as_a_size_t(m_index));
}
msev_size_t m_index = 0;
msev_pointer<const _Myt> m_owner_cptr = nullptr;
friend class /*_Myt*/msevector<_Ty, _A>;
};
/* ss_iterator_type is a bounds checked iterator. */
class ss_iterator_type : public random_access_iterator_base {
public:
typedef typename base_class::iterator::iterator_category iterator_category;
typedef typename base_class::iterator::value_type value_type;
//typedef typename base_class::iterator::difference_type difference_type;
typedef typename _Myt::difference_type difference_type;
typedef difference_type distance_type; // retained
typedef typename base_class::iterator::pointer pointer;
typedef typename base_class::iterator::reference reference;
ss_iterator_type() {}
void reset() { set_to_end_marker(); }
bool points_to_an_item() const {
if (m_owner_ptr->size() > m_index) { return true; }
else {
if (m_index == m_owner_ptr->size()) { return false; }
else { MSE_THROW(msevector_range_error("attempt to use invalid ss_iterator_type - bool points_to_an_item() const - ss_iterator_type - msevector")); }
}
}
bool points_to_end_marker() const {
if (false == points_to_an_item()) {
assert(m_index == m_owner_ptr->size());
return true;
}
else { return false; }
}
bool points_to_beginning() const {
if (0 == m_index) { return true; }
else { return false; }
}
/* has_next_item_or_end_marker() is just an alias for points_to_an_item(). */
bool has_next_item_or_end_marker() const { return points_to_an_item(); }
/* has_next() is just an alias for points_to_an_item() that's familiar to java programmers. */
bool has_next() const { return has_next_item_or_end_marker(); }
bool has_previous() const {
if (m_owner_ptr->size() < m_index) {
MSE_THROW(msevector_range_error("attempt to use invalid ss_iterator_type - bool has_previous() const - ss_iterator_type - msevector"));
} else if (1 <= m_index) {
return true;
}
else {
return false;
}
}
void set_to_beginning() {
m_index = 0;
}
void set_to_end_marker() {
m_index = m_owner_ptr->size();
}
void set_to_next() {
if (points_to_an_item()) {
m_index += 1;
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid item_pointer - void set_to_next() - ss_const_iterator_type - msevector"));
}
}
void set_to_previous() {
if (has_previous()) {
m_index -= 1;
}
else {
MSE_THROW(msevector_range_error("attempt to use invalid item_pointer - void set_to_previous() - ss_iterator_type - msevector"));
}
}
ss_iterator_type& operator ++() { (*this).set_to_next(); return (*this); }
ss_iterator_type operator++(int) { ss_iterator_type _Tmp = *this; (*this).set_to_next(); return (_Tmp); }
ss_iterator_type& operator --() { (*this).set_to_previous(); return (*this); }
ss_iterator_type operator--(int) { ss_iterator_type _Tmp = *this; (*this).set_to_previous(); return (_Tmp); }
void advance(difference_type n) {
auto new_index = msev_int(m_index) + n;
if ((0 > new_index) || (m_owner_ptr->size() < msev_size_t(new_index))) {
MSE_THROW(msevector_range_error("index out of range - void advance(difference_type n) - ss_iterator_type - msevector"));
}
else {
m_index = msev_size_t(new_index);
}
}
void regress(difference_type n) { advance(-n); }
ss_iterator_type& operator +=(difference_type n) { (*this).advance(n); return (*this); }
ss_iterator_type& operator -=(difference_type n) { (*this).regress(n); return (*this); }
ss_iterator_type operator+(difference_type n) const {
ss_iterator_type retval; retval.m_owner_ptr = m_owner_ptr;
retval = (*this);
retval.advance(n);
return retval;
}
ss_iterator_type operator-(difference_type n) const { return ((*this) + (-n)); }
difference_type operator-(const ss_iterator_type& rhs) const {
if (rhs.m_owner_ptr != (*this).m_owner_ptr) { MSE_THROW(msevector_range_error("invalid argument - difference_type operator-(const ss_iterator_type& rhs) const - msevector::ss_iterator_type")); }
auto retval = difference_type((*this).m_index) - difference_type(rhs.m_index);
assert(int((*m_owner_ptr).size()) >= retval);
return retval;
}
reference operator*() const {
return (*m_owner_ptr).at(msev_as_a_size_t((*this).m_index));
}
reference item() const { return operator*(); }
reference previous_item() const {
return m_owner_ptr->at(msev_as_a_size_t(m_index - 1));
}
pointer operator->() const {
return &((*m_owner_ptr).at(msev_as_a_size_t((*this).m_index)));
}
reference operator[](difference_type _Off) const { return (*m_owner_ptr).at(msev_as_a_size_t(difference_type(m_index) + _Off)); }
/*
ss_iterator_type& operator=(const typename base_class::iterator& _Right_cref)
{
msev_int d = std::distance<typename base_class::iterator>(m_owner_ptr->begin(), _Right_cref);
if ((0 <= d) && (m_owner_ptr->size() >= d)) {
if (m_owner_ptr->size() == d) {
assert(m_owner_ptr->end() == _Right_cref);
}
m_index = msev_size_t(d);
base_class::iterator::operator=(_Right_cref);
}
else {
MSE_THROW(msevector_range_error("doesn't seem to be a valid assignment value - ss_iterator_type& operator=(const typename base_class::iterator& _Right_cref) - ss_const_iterator_type - msevector"));
}
return (*this);
}
*/
ss_iterator_type& operator=(const ss_iterator_type& _Right_cref) {
((*this).m_owner_ptr) = _Right_cref.m_owner_ptr;
(*this).m_index = _Right_cref.m_index;
return (*this);
}
bool operator==(const ss_iterator_type& _Right_cref) const {
if (this->m_owner_ptr != _Right_cref.m_owner_ptr) { MSE_THROW(msevector_range_error("invalid argument - ss_iterator_type& operator==(const ss_iterator_type& _Right) - ss_iterator_type - msevector")); }
return (_Right_cref.m_index == m_index);
}
bool operator!=(const ss_iterator_type& _Right_cref) const { return (!(_Right_cref == (*this))); }
bool operator<(const ss_iterator_type& _Right) const {
if (this->m_owner_ptr != _Right.m_owner_ptr) { MSE_THROW(msevector_range_error("invalid argument - ss_iterator_type& operator<(const ss_iterator_type& _Right) - ss_iterator_type - msevector")); }
return (m_index < _Right.m_index);
}
bool operator<=(const ss_iterator_type& _Right) const { return (((*this) < _Right) || (_Right == (*this))); }
bool operator>(const ss_iterator_type& _Right) const { return (!((*this) <= _Right)); }
bool operator>=(const ss_iterator_type& _Right) const { return (!((*this) < _Right)); }
void set_to_item_pointer(const ss_iterator_type& _Right_cref) {
(*this) = _Right_cref;
}
void invalidate_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
(*this).reset();
}
}
void shift_inclusive_range(msev_size_t index_of_first, msev_size_t index_of_last, msev_int shift) {
if ((index_of_first <= (*this).m_index) && (index_of_last >= (*this).m_index)) {
auto new_index = (*this).m_index + shift;
if ((0 > new_index) || (m_owner_ptr->size() < new_index)) {
MSE_THROW(msevector_range_error("void shift_inclusive_range() - ss_iterator_type - msevector"));
}
else {
(*this).m_index = msev_size_t(new_index);
(*this).sync_iterator_to_index();
}
}
}
msev_size_t position() const {
return m_index;
}
operator ss_const_iterator_type() const {
ss_const_iterator_type retval;
if (nullptr != m_owner_ptr) {
retval = m_owner_ptr->ss_cbegin();
retval.advance(msev_int(m_index));
}
return retval;
}
operator typename base_class::iterator() const {
typename base_class::iterator retval = (*m_owner_ptr).begin();
retval += msev_as_a_size_t(m_index);
return retval;
}
private:
void sync_iterator_to_index() {
assert(m_owner_ptr->size() >= (*this).m_index);
//base_class::iterator::operator=(m_owner_ptr->begin());
//base_class::iterator::operator+=(msev_as_a_size_t(m_index));
}
msev_size_t m_index = 0;
msev_pointer<_Myt> m_owner_ptr = nullptr;
friend class /*_Myt*/msevector<_Ty, _A>;
};
typedef std::reverse_iterator<ss_iterator_type> ss_reverse_iterator_type;
typedef std::reverse_iterator<ss_const_iterator_type> ss_const_reverse_iterator_type;
ss_iterator_type ss_begin()
{ // return base_class::iterator for beginning of mutable sequence
ss_iterator_type retval; retval.m_owner_ptr = this;
retval.set_to_beginning();
return retval;
}
ss_const_iterator_type ss_begin() const
{ // return base_class::iterator for beginning of nonmutable sequence
ss_const_iterator_type retval; retval.m_owner_cptr = this;
retval.set_to_beginning();
return retval;
}
ss_iterator_type ss_end()
{ // return base_class::iterator for end of mutable sequence
ss_iterator_type retval; retval.m_owner_ptr = this;
retval.set_to_end_marker();
return retval;
}
ss_const_iterator_type ss_end() const
{ // return base_class::iterator for end of nonmutable sequence
ss_const_iterator_type retval; retval.m_owner_cptr = this;
retval.set_to_end_marker();
return retval;
}
ss_const_iterator_type ss_cbegin() const
{ // return base_class::iterator for beginning of nonmutable sequence
ss_const_iterator_type retval; retval.m_owner_cptr = this;
retval.set_to_beginning();
return retval;
}
ss_const_iterator_type ss_cend() const
{ // return base_class::iterator for end of nonmutable sequence
ss_const_iterator_type retval; retval.m_owner_cptr = this;
retval.set_to_end_marker();
return retval;
}
ss_const_reverse_iterator_type ss_crbegin() const
{ // return base_class::iterator for beginning of reversed nonmutable sequence
return (ss_rbegin());
}
ss_const_reverse_iterator_type ss_crend() const
{ // return base_class::iterator for end of reversed nonmutable sequence
return (ss_rend());
}
ss_reverse_iterator_type ss_rbegin()
{ // return base_class::iterator for beginning of reversed mutable sequence
return (reverse_iterator(ss_end()));
}
ss_const_reverse_iterator_type ss_rbegin() const
{ // return base_class::iterator for beginning of reversed nonmutable sequence
return (const_reverse_iterator(ss_end()));
}
ss_reverse_iterator_type ss_rend()
{ // return base_class::iterator for end of reversed mutable sequence
return (reverse_iterator(ss_begin()));
}
ss_const_reverse_iterator_type ss_rend() const
{ // return base_class::iterator for end of reversed nonmutable sequence
return (const_reverse_iterator(ss_begin()));
}
msevector(const ss_const_iterator_type &start, const ss_const_iterator_type &end, const _A& _Al = _A())
: base_class(_Al), m_mmitset(*this) {
/*m_debug_size = size();*/
assign(start, end);
}
void assign(const ss_const_iterator_type &start, const ss_const_iterator_type &end) {
if (start.m_owner_cptr != end.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void assign(const ss_const_iterator_type &start, const ss_const_iterator_type &end) - msevector")); }
if (start > end) { MSE_THROW(msevector_range_error("invalid arguments - void assign(const ss_const_iterator_type &start, const ss_const_iterator_type &end) - msevector")); }
typename base_class::const_iterator _F = start;
typename base_class::const_iterator _L = end;
(*this).assign(_F, _L);
}
void assign_inclusive(const ss_const_iterator_type &first, const ss_const_iterator_type &last) {
auto end = last;
end++; // this should include some checks
(*this).assign(first, end);
}
ss_iterator_type insert_before(const ss_const_iterator_type &pos, size_type _M, const _Ty& _X) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid argument - void insert_before() - msevector")); }
pos.assert_valid_index();
msev_size_t original_pos = pos.position();
typename base_class::const_iterator _P = pos;
(*this).insert(_P, _M, _X);
ss_iterator_type retval = ss_begin();
retval.advance(msev_int(original_pos));
return retval;
}
ss_iterator_type insert_before(const ss_const_iterator_type &pos, _Ty&& _X) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid argument - void insert_before() - msevector")); }
pos.assert_valid_index();
msev_size_t original_pos = pos.position();
typename base_class::const_iterator _P = pos;
(*this).insert(_P, std::move(_X));
ss_iterator_type retval = ss_begin();
retval.advance(msev_int(original_pos));
return retval;
}
ss_iterator_type insert_before(const ss_const_iterator_type &pos, const _Ty& _X = _Ty()) { return (*this).insert(pos, 1, _X); }
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
ss_iterator_type insert_before(const ss_const_iterator_type &pos, const _Iter &start, const _Iter &end) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid argument - ss_iterator_type insert_before() - msevector")); }
//if (start.m_owner_cptr != end.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before(const ss_const_iterator_type &pos, const ss_const_iterator_type &start, const ss_const_iterator_type &end) - msevector")); }
pos.assert_valid_index();
msev_size_t original_pos = pos.position();
typename base_class::const_iterator _P = pos;
(*this).insert(_P, start, end);
ss_iterator_type retval = ss_begin();
retval.advance(msev_int(original_pos));
return retval;
}
ss_iterator_type insert_before(const ss_const_iterator_type &pos, const ss_const_iterator_type& start, const ss_const_iterator_type &end) {
if (start.m_owner_cptr != end.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before(const ss_const_iterator_type &pos, const ss_const_iterator_type &start, const ss_const_iterator_type &end) - msevector")); }
end.assert_valid_index();
if (start > end) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before(const ss_const_iterator_type &pos, const ss_const_iterator_type &start, const ss_const_iterator_type &end) - msevector")); }
typename base_class::const_iterator _S = start;
typename base_class::const_iterator _E = end;
return (*this).insert_before(pos, _S, _E);
}
ss_iterator_type insert_before(const ss_const_iterator_type &pos, const _Ty* start, const _Ty* end) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - ss_iterator_type insert_before() - msevector")); }
//if (start.m_owner_cptr != end.m_owner_cptr) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before(const ss_const_iterator_type &pos, const ss_const_iterator_type &start, const ss_const_iterator_type &end) - msevector")); }
if (start > end) { MSE_THROW(msevector_range_error("invalid arguments - ss_iterator_type insert_before() - msevector")); }
pos.assert_valid_index();
msev_size_t original_pos = pos.position();
typename base_class::const_iterator _P = pos;
(*this).insert(_P, start, end);
ss_iterator_type retval = ss_begin();
retval.advance(msev_int(original_pos));
return retval;
}
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
ss_iterator_type insert_before_inclusive(const ss_iterator_type &pos, const _Iter &first, const _Iter &last) {
auto end = last;
end++; // this may include some checks
return (*this).insert_before(pos, first, end);
}
ss_iterator_type insert_before(const ss_const_iterator_type &pos, _XSTD initializer_list<typename base_class::value_type> _Ilist) { // insert initializer_list
if (pos.m_owner_ptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void insert_before() - msevector")); }
pos.assert_valid_index();
msev_size_t original_pos = pos.position();
typename base_class::const_iterator _P = pos;
(*this).insert(_P, _Ilist);
ss_iterator_type retval = ss_begin();
retval.advance(msev_int(original_pos));
return retval;
}
/* These insert() functions are just aliases for their corresponding insert_before() functions. */
ss_iterator_type insert(const ss_const_iterator_type &pos, size_type _M, const _Ty& _X) { return insert_before(pos, _M, _X); }
ss_iterator_type insert(const ss_const_iterator_type &pos, _Ty&& _X) { return insert_before(pos, std::move(_X)); }
ss_iterator_type insert(const ss_const_iterator_type &pos, const _Ty& _X = _Ty()) { return insert_before(pos, _X); }
template<class _Iter
//>typename std::enable_if<_mse_Is_iterator<_Iter>::value, typename base_class::iterator>::type
, class = _mse_RequireInputIter<_Iter> >
ss_iterator_type insert(const ss_const_iterator_type &pos, const _Iter &start, const _Iter &end) { return insert_before(pos, start, end); }
ss_iterator_type insert(const ss_const_iterator_type &pos, const _Ty* start, const _Ty* &end) { return insert_before(pos, start, end); }
ss_iterator_type insert(const ss_const_iterator_type &pos, _XSTD initializer_list<typename base_class::value_type> _Ilist) { return insert_before(pos, _Ilist); }
template<class ..._Valty>
#if !(defined(GPP4P8_COMPATIBLE))
ss_iterator_type emplace(const ss_const_iterator_type &pos, _Valty&& ..._Val)
{ // insert by moving _Val at pos
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void emplace() - msevector")); }
#else /*!(defined(GPP4P8_COMPATIBLE))*/
ipointer emplace(const ipointer &pos, _Valty&& ..._Val)
{ // insert by moving _Val at pos
if (pos.m_owner_ptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void emplace() - msevector")); }
#endif /*!(defined(GPP4P8_COMPATIBLE))*/
pos.assert_valid_index();
msev_size_t original_pos = pos.position();
typename base_class::const_iterator _P = pos;
(*this).emplace(_P, std::forward<_Valty>(_Val)...);
ss_iterator_type retval = ss_begin();
retval.advance(msev_int(original_pos));
return retval;
}
ss_iterator_type erase(const ss_const_iterator_type &pos) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
if (!pos.points_to_an_item()) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
auto pos_index = pos.position();
typename base_class::const_iterator _P = pos;
(*this).erase(_P);
ss_iterator_type retval = (*this).ss_begin();
retval.advance(typename ss_const_iterator_type::difference_type(pos_index));
return retval;
}
ss_iterator_type erase(const ss_const_iterator_type &start, const ss_const_iterator_type &end) {
if (start.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
if (end.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
if (start.position() > end.position()) { MSE_THROW(msevector_range_error("invalid arguments - void erase() - msevector")); }
auto pos_index = start.position();
typename base_class::const_iterator _F = start;
typename base_class::const_iterator _L = end;
(*this).erase(_F, _L);
ss_iterator_type retval = (*this).ss_begin();
retval.advance(typename ss_const_iterator_type::difference_type(pos_index));
return retval;
}
ss_iterator_type erase_inclusive(const ss_const_iterator_type &first, const ss_const_iterator_type &last) {
auto end = last; end.set_to_next();
return erase(first, end);
}
void erase_previous_item(const ss_const_iterator_type &pos) {
if (pos.m_owner_cptr != this) { MSE_THROW(msevector_range_error("invalid arguments - void erase_previous_item() - msevector")); }
if (!(pos.has_previous())) { MSE_THROW(msevector_range_error("invalid arguments - void erase_previous_item() - msevector")); }
typename base_class::const_iterator _P = pos;
_P--;
(*this).erase(_P);
}
};
}
#undef MSE_THROW
#endif /*ndef MSEMSEVECTOR_H*/
|