// Copyright (c) Athena Dev Teams - Licensed under GNU GPL // For more information, see LICENCE in the main folder #include #ifdef __WIN32 #define __USE_W32_SOCKETS // Well, this won't last another 30++ years (where conversion will truncate). //#define _USE_32BIT_TIME_T // use 32 bit time variables on 64bit windows #include #else #include #include #endif #include #include #include #include #include "timer.h" #include "malloc.h" #include "showmsg.h" // タイマー間隔の最小値。モンスターの大量召還時、多数のクライアント接続時に // サーバーが反応しなくなる場合は、TIMER_MIN_INTERVAL を増やしてください。 // If the server shows no reaction when processing thousands of monsters // or connected by many clients, please increase TIMER_MIN_INTERVAL. #define TIMER_MIN_INTERVAL 50 static struct TimerData* timer_data = NULL; static int timer_data_max = 0; static int timer_data_num = 0; static int* free_timer_list = NULL; static int free_timer_list_max = 0; static int free_timer_list_pos = 0; static int timer_heap_num = 0; static int timer_heap_max = 0; static int* timer_heap = NULL; static int fix_heap_flag =0; //Flag for fixing the stack only once per tick loop. May not be the best way, but it's all I can think of currently :X [Skotlex] // for debug struct timer_func_list { int (*func)(int,unsigned int,int,int); struct timer_func_list* next; char* name; }; static struct timer_func_list* tfl_root; time_t start_time; #ifdef __WIN32 /* Modified struct timezone to void - we pass NULL anyway */ void gettimeofday (struct timeval *t, void *dummy) { DWORD millisec = GetTickCount(); t->tv_sec = (int) (millisec / 1000); t->tv_usec = (millisec % 1000) * 1000; } #endif // int add_timer_func_list(int (*func)(int,unsigned int,int,int), char* name) { struct timer_func_list* tfl; if (name) { tfl = (struct timer_func_list*) aCalloc (sizeof(struct timer_func_list), 1); tfl->name = (char *) aMalloc (strlen(name) + 1); tfl->next = tfl_root; tfl->func = func; strcpy(tfl->name, name); tfl_root = tfl; } return 0; } char* search_timer_func_list(int (*func)(int,unsigned int,int,int)) { struct timer_func_list* tfl = tfl_root; while (tfl) { if (func == tfl->func) return tfl->name; tfl = tfl->next; } return "unknown timer function"; } /*---------------------------- * Get tick time *----------------------------*/ static unsigned int gettick_cache; static int gettick_count; unsigned int gettick_nocache(void) { struct timeval tval; gettimeofday(&tval, NULL); gettick_count = 256; return gettick_cache = tval.tv_sec * 1000 + tval.tv_usec / 1000; } unsigned int gettick(void) { gettick_count--; if (gettick_count < 0) return gettick_nocache(); return gettick_cache; } /*====================================== * CORE : Timer Heap *-------------------------------------- */ static void push_timer_heap(int index) { int i, j; int min, max, pivot; // for sorting // check number of element if (timer_heap_num >= timer_heap_max) { if (timer_heap_max == 0) { timer_heap_max = 256; timer_heap = (int *) aCalloc( sizeof(int) , 256); } else { timer_heap_max += 256; timer_heap = (int *) aRealloc( timer_heap, sizeof(int) * timer_heap_max); malloc_tsetdword(timer_heap + (timer_heap_max - 256), 0, sizeof(int) * 256); } } // do a sorting from higher to lower j = timer_data[index].tick; // speed up // with less than 4 values, it's speeder to use simple loop if (timer_heap_num < 4) { for(i = timer_heap_num; i > 0; i--) // if (j < timer_data[timer_heap[i - 1]].tick) //Plain comparisons break on bound looping timers. [Skotlex] if (DIFF_TICK(j, timer_data[timer_heap[i - 1]].tick) < 0) break; else timer_heap[i] = timer_heap[i - 1]; timer_heap[i] = index; // searching by dichotomie } else { // if lower actual item is higher than new // if (j < timer_data[timer_heap[timer_heap_num - 1]].tick) //Plain comparisons break on bound looping timers. [Skotlex] if (DIFF_TICK(j, timer_data[timer_heap[timer_heap_num - 1]].tick) < 0) timer_heap[timer_heap_num] = index; else { // searching position min = 0; max = timer_heap_num - 1; while (min < max) { pivot = (min + max) / 2; // if (j < timer_data[timer_heap[pivot]].tick) //Plain comparisons break on bound looping timers. [Skotlex] if (DIFF_TICK(j, timer_data[timer_heap[pivot]].tick) < 0) min = pivot + 1; else max = pivot; } // move elements - do loop if there are a little number of elements to move if (timer_heap_num - min < 5) { for(i = timer_heap_num; i > min; i--) timer_heap[i] = timer_heap[i - 1]; // move elements - else use memmove (speeder for a lot of elements) } else memmove(&timer_heap[min + 1], &timer_heap[min], sizeof(int) * (timer_heap_num - min)); // save new element timer_heap[min] = index; } } timer_heap_num++; } /*========================== * Timer Management *-------------------------- */ int acquire_timer (void) { int i; if (free_timer_list_pos) { do { i = free_timer_list[--free_timer_list_pos]; } while(i >= timer_data_num && free_timer_list_pos > 0); } else i = timer_data_num; if (i >= timer_data_num) for (i = timer_data_num; i < timer_data_max && timer_data[i].type; i++); if (i >= timer_data_num && i >= timer_data_max) { if (timer_data_max == 0) { timer_data_max = 256; timer_data = (struct TimerData*) aCalloc( sizeof(struct TimerData) , timer_data_max); } else { timer_data_max += 256; timer_data = (struct TimerData *) aRealloc( timer_data, sizeof(struct TimerData) * timer_data_max); malloc_tsetdword(timer_data + (timer_data_max - 256), 0, sizeof(struct TimerData) * 256); } } return i; } int add_timer(unsigned int tick,int (*func)(int,unsigned int,int,int), int id, int data) { int tid = acquire_timer(); timer_data[tid].tick = tick; timer_data[tid].func = func; timer_data[tid].id = id; timer_data[tid].data = data; timer_data[tid].type = TIMER_ONCE_AUTODEL; timer_data[tid].interval = 1000; push_timer_heap(tid); if (tid >= timer_data_num) timer_data_num = tid + 1; return tid; } int add_timer_interval(unsigned int tick, int (*func)(int,unsigned int,int,int), int id, int data, int interval) { int tid; if (interval < 1) { ShowError("add_timer_interval : function %08x(%s) has invalid interval %d!\n", (int)func, search_timer_func_list(func), interval); return -1; } tid = acquire_timer(); timer_data[tid].tick = tick; timer_data[tid].func = func; timer_data[tid].id = id; timer_data[tid].data = data; timer_data[tid].type = TIMER_INTERVAL; timer_data[tid].interval = interval; push_timer_heap(tid); if (tid >= timer_data_num) timer_data_num = tid + 1; return tid; } int delete_timer(int id, int (*func)(int,unsigned int,int,int)) { if (id <= 0 || id >= timer_data_num) { ShowError("delete_timer error : no such timer %d (%08x(%s))\n", id, (int)func, search_timer_func_list(func)); return -1; } if (timer_data[id].func != func) { ShowError("delete_timer error : function mismatch %08x(%s) != %08x(%s)\n", (int)timer_data[id].func, search_timer_func_list(timer_data[id].func), (int)func, search_timer_func_list(func)); return -2; } // そのうち消えるにまかせる timer_data[id].func = NULL; timer_data[id].type = TIMER_ONCE_AUTODEL; return 0; } int addtick_timer(int tid, unsigned int tick) { return timer_data[tid].tick += tick; } //Sets the tick at which the timer triggers directly (meant as a replacement of delete_timer + add_timer) [Skotlex] //FIXME: DON'T use this function yet, it is not correctly reorganizing the timer stack causing unexpected problems later on! int settick_timer(int tid, unsigned int tick) { int i,j; if (timer_data[tid].tick == tick) return tick; //FIXME: This search is not all that effective... there doesn't seems to be a better way to locate an element in the heap. for(i = timer_heap_num-1; i >= 0 && timer_heap[i] != tid; i--); if (i < 0) return -1; //Sort of impossible, isn't it? if (DIFF_TICK(timer_data[tid].tick, tick) > 0) { //Timer is accelerated, shift timer near the end of the heap. if (i == timer_heap_num-1) //Nothing to shift. j = timer_heap_num-1; else { for (j = i+1; j < timer_heap_num && DIFF_TICK(timer_data[j].tick, tick) > 0; j++); j--; memmove(&timer_heap[i], &timer_heap[i+1], (j-i)*sizeof(int)); } } else { //Timer is delayed, shift timer near the beginning of the heap. if (i == 0) //Nothing to shift. j = 0; else { for (j = i-1; j >= 0 && DIFF_TICK(timer_data[j].tick, tick) < 0; j--); j++; memmove(&timer_heap[j+1], &timer_heap[j], (i-j)*sizeof(int)); } } timer_heap[j] = tid; timer_data[tid].tick = tick; return tick; } struct TimerData* get_timer(int tid) { return &timer_data[tid]; } //Correcting the heap when the tick overflows is an idea taken from jA to //prevent timer problems. Thanks to [End of Exam] for providing the required data. [Skotlex] //This funtion will rearrange the heap and assign new tick values. static void fix_timer_heap(unsigned int tick) { if (timer_heap_num >= 0 && tick < 0x00010000 && timer_data[timer_heap[0]].tick > 0xf0000000) { //The last timer is way too far into the future, and the current tick is too close to 0, overflow was very likely //(not perfect, but will work as long as the timer is not expected to happen 50 or so days into the future) int i; int *tmp_heap; for (i=0; i < timer_heap_num && timer_data[timer_heap[i]].tick > 0xf0000000; i++) { //All functions with high tick value should had been executed already... timer_data[timer_heap[i]].tick = 0; } //Move elements to readjust the heap. tmp_heap = aCalloc(sizeof(int), i); memmove(&tmp_heap[0], &timer_heap[0], i*sizeof(int)); memmove(&timer_heap[0], &timer_heap[i], (timer_heap_num-i)*sizeof(int)); memmove(&timer_heap[timer_heap_num-i], &tmp_heap[0], i*sizeof(int)); aFree(tmp_heap); } } int do_timer(unsigned int tick) { int i, nextmin = 1000; if (tick < 0x010000 && fix_heap_flag) { fix_timer_heap(tick); fix_heap_flag = 0; } while(timer_heap_num) { i = timer_heap[timer_heap_num - 1]; // next shorter element if ((nextmin = DIFF_TICK(timer_data[i].tick, tick)) > 0) break; if (timer_heap_num > 0) // suppress the actual element from the table timer_heap_num--; timer_data[i].type |= TIMER_REMOVE_HEAP; if (timer_data[i].func) { if (nextmin < -1000) { // 1秒以上の大幅な遅延が発生しているので、 // timer処理タイミングを現在値とする事で // 呼び出し時タイミング(引数のtick)相対で処理してる // timer関数の次回処理タイミングを遅らせる timer_data[i].func(i, tick, timer_data[i].id, timer_data[i].data); } else { timer_data[i].func(i, timer_data[i].tick, timer_data[i].id, timer_data[i].data); } } if (timer_data[i].type & TIMER_REMOVE_HEAP) { switch(timer_data[i].type & ~TIMER_REMOVE_HEAP) { case TIMER_ONCE_AUTODEL: timer_data[i].type = 0; if (free_timer_list_pos >= free_timer_list_max) { free_timer_list_max += 256; free_timer_list = (int *) aRealloc(free_timer_list, sizeof(int) * free_timer_list_max); malloc_tsetdword(free_timer_list + (free_timer_list_max - 256), 0, 256 * sizeof(int)); } free_timer_list[free_timer_list_pos++] = i; break; case TIMER_INTERVAL: if (DIFF_TICK(timer_data[i].tick , tick) < -1000) { timer_data[i].tick = tick + timer_data[i].interval; } else { timer_data[i].tick += timer_data[i].interval; } timer_data[i].type &= ~TIMER_REMOVE_HEAP; push_timer_heap(i); break; } } } if (nextmin < TIMER_MIN_INTERVAL) nextmin = TIMER_MIN_INTERVAL; if ((unsigned int)(tick + nextmin) < tick) //Tick will loop, rearrange the heap on the next iteration. fix_heap_flag = 1; return nextmin; } unsigned long get_uptime (void) { return (unsigned long) difftime (time(NULL), start_time); } void timer_init(void) { time(&start_time); } void timer_final(void) { struct timer_func_list* tfl = tfl_root, *tfl2; while (tfl) { tfl2 = tfl->next; // copy next pointer aFree(tfl->name); // free structures aFree(tfl); tfl = tfl2; // use copied pointer for next cycle } if (timer_data) aFree(timer_data); if (timer_heap) aFree(timer_heap); if (free_timer_list) aFree(free_timer_list); }