/**
* This file is part of Hercules.
* http://herc.ws - http://github.com/HerculesWS/Hercules
*
* Copyright (C) 2012-2020 Hercules Dev Team
* Copyright (C) Athena Dev Teams
*
* Hercules is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*****************************************************************************\
* This file is separated in two sections: *
* (1) public typedefs, enums, unions, structures and defines *
* (2) public functions *
* *
* Notes on the release system: *
* Whenever an entry is removed from the database both the key and the *
* data are requested to be released. *
* At least one entry is removed when replacing an entry, removing an *
* entry, clearing the database or destroying the database. *
* What is actually released is defined by the release function, the *
* functions of the database only ask for the key and/or data to be *
* released. *
* *
* TODO: *
* - create a custom database allocator *
* - see what functions need or should be added to the database interface *
* *
* HISTORY: *
* 2013/08/25 - Added int64/uint64 support for keys *
* 2012/03/09 - Added enum for data types (int, uint, void*) *
* 2007/11/09 - Added an iterator to the database. *
* 2.1 (Athena build #???#) - Portability fix *
* - Fixed the portability of casting to union and added the functions *
* struct DBMap#ensure() and struct DBMap#clear(). *
* 2.0 (Athena build 4859) - Transition version *
* - Almost everything recoded with a strategy similar to objects, *
* database structure is maintained. *
* 1.0 (up to Athena build 4706) *
* - Previous database system. *
* *
* @version 2.1 (Athena build #???#) - Portability fix *
* @author (Athena build 4859) Flavio @ Amazon Project *
* @author (up to Athena build 4706) Athena Dev Teams *
* @encoding US-ASCII *
* @see common#db.c *
\*****************************************************************************/
#ifndef COMMON_DB_H
#define COMMON_DB_H
#include "common/hercules.h"
#include
/*****************************************************************************
* (1) Section with public typedefs, enums, unions, structures and defines. *
* enum DBReleaseOption - Enumeration of release options. *
* enum DBType - Enumeration of database types. *
* enum DBOptions - Bitfield enumeration of database options. *
* union DBKey - Union of used key types. *
* enum DBDataType - Enumeration of data types. *
* struct DBData - Struct for used data types. *
* DBApply - Format of functions applied to the databases. *
* DBMatcher - Format of matchers used in struct DBMap#getall(). *
* DBComparator - Format of the comparators used by the databases. *
* DBHasher - Format of the hashers used by the databases. *
* DBReleaser - Format of the releasers used by the databases. *
* struct DBIterator - Database iterator. *
* struct DBMap - Database interface. *
*****************************************************************************/
/**
* Bitfield with what should be released by the releaser function (if the
* function supports it).
* @public
* @see #DBReleaser
* @see #db_custom_release()
*/
enum DBReleaseOption {
DB_RELEASE_NOTHING = 0x0,
DB_RELEASE_KEY = 0x1,
DB_RELEASE_DATA = 0x2,
DB_RELEASE_BOTH = DB_RELEASE_KEY|DB_RELEASE_DATA,
};
/**
* Supported types of database.
*
* See #db_fix_options() for restrictions of the types of databases.
*
* @param DB_INT Uses int's for keys
* @param DB_UINT Uses unsigned int's for keys
* @param DB_STRING Uses strings for keys.
* @param DB_ISTRING Uses case insensitive strings for keys.
* @param DB_INT64 Uses int64's for keys
* @param DB_UINT64 Uses uint64's for keys
* @public
* @see enum DBOptions
* @see union DBKey
* @see #db_fix_options()
* @see #db_default_cmp()
* @see #db_default_hash()
* @see #db_default_release()
* @see #db_alloc()
*/
enum DBType {
DB_INT,
DB_UINT,
DB_STRING,
DB_ISTRING,
DB_INT64,
DB_UINT64,
};
/**
* Bitfield of options that define the behavior of the database.
*
* See #db_fix_options() for restrictions of the types of databases.
*
* @param DB_OPT_BASE Base options: does not duplicate keys, releases nothing
* and does not allow NULL keys or NULL data.
* @param DB_OPT_DUP_KEY Duplicates the keys internally. If DB_OPT_RELEASE_KEY
* is defined, the real key is freed as soon as the entry is added.
* @param DB_OPT_RELEASE_KEY Releases the key.
* @param DB_OPT_RELEASE_DATA Releases the data whenever an entry is removed
* from the database.
* WARNING: for functions that return the data (like struct DBMap#remove()),
* a dangling pointer will be returned.
* @param DB_OPT_RELEASE_BOTH Releases both key and data.
* @param DB_OPT_ALLOW_NULL_KEY Allow NULL keys in the database.
* @param DB_OPT_ALLOW_NULL_DATA Allow NULL data in the database.
* @public
* @see #db_fix_options()
* @see #db_default_release()
* @see #db_alloc()
*/
enum DBOptions {
DB_OPT_BASE = 0x00,
DB_OPT_DUP_KEY = 0x01,
DB_OPT_RELEASE_KEY = 0x02,
DB_OPT_RELEASE_DATA = 0x04,
DB_OPT_RELEASE_BOTH = DB_OPT_RELEASE_KEY|DB_OPT_RELEASE_DATA,
DB_OPT_ALLOW_NULL_KEY = 0x08,
DB_OPT_ALLOW_NULL_DATA = 0x10,
};
/**
* Union of key types used by the database.
* @param i Type of key for DB_INT databases
* @param ui Type of key for DB_UINT databases
* @param str Type of key for DB_STRING and DB_ISTRING databases
* @public
* @see enum DBType
* @see struct DBMap#get()
* @see struct DBMap#put()
* @see struct DBMap#remove()
*/
union DBKey {
int i;
unsigned int ui;
const char *str;
char *mutstr;
int64 i64;
uint64 ui64;
};
/**
* Supported types of database data.
* @param DB_DATA_INT Uses ints for data.
* @param DB_DATA_UINT Uses unsigned ints for data.
* @param DB_DATA_PTR Uses void pointers for data.
* @public
* @see struct DBData
*/
enum DBDataType {
DB_DATA_INT,
DB_DATA_UINT,
DB_DATA_PTR,
};
/**
* Struct for data types used by the database.
* @param type Type of data
* @param u Union of available data types
* @param u.i Data of int type
* @param u.ui Data of unsigned int type
* @param u.ptr Data of void* type
* @public
*/
struct DBData {
enum DBDataType type;
union {
int i;
unsigned int ui;
void *ptr;
} u;
};
/**
* Format of functions that create the data for the key when the entry doesn't
* exist in the database yet.
* @param key Key of the database entry
* @param args Extra arguments of the function
* @return Data identified by the key to be put in the database
* @public
* @see struct DBMap#vensure()
* @see struct DBMap#ensure()
*/
typedef struct DBData (*DBCreateData)(union DBKey key, va_list args);
/**
* Format of functions to be applied to an unspecified quantity of entries of
* a database.
* Any function that applies this function to the database will return the sum
* of values returned by this function.
* @param key Key of the database entry
* @param data Data of the database entry
* @param args Extra arguments of the function
* @return Value to be added up by the function that is applying this
* @public
* @see struct DBMap#vforeach()
* @see struct DBMap#foreach()
* @see struct DBMap#vdestroy()
* @see struct DBMap#destroy()
*/
typedef int (*DBApply)(union DBKey key, struct DBData *data, va_list args);
/**
* Format of functions that match database entries.
* The purpose of the match depends on the function that is calling the matcher.
* Returns 0 if it is a match, another number otherwise.
* @param key Key of the database entry
* @param data Data of the database entry
* @param args Extra arguments of the function
* @return 0 if a match, another number otherwise
* @public
* @see struct DBMap#getall()
*/
typedef int (*DBMatcher)(union DBKey key, struct DBData data, va_list args);
/**
* Format of the comparators used internally by the database system.
* Compares key1 to key2.
* Returns 0 is equal, negative if lower and positive is higher.
* @param key1 Key being compared
* @param key2 Key we are comparing to
* @param maxlen Maximum number of characters used in DB_STRING and DB_ISTRING
* databases.
* @return 0 if equal, negative if lower and positive if higher
* @public
* @see #db_default_cmp()
*/
typedef int (*DBComparator)(union DBKey key1, union DBKey key2, unsigned short maxlen);
/**
* Format of the hashers used internally by the database system.
* Creates the hash of the key.
* @param key Key being hashed
* @param maxlen Maximum number of characters used in DB_STRING and DB_ISTRING
* databases.
* @return Hash of the key
* @public
* @see #db_default_hash()
*/
typedef uint64 (*DBHasher)(union DBKey key, unsigned short maxlen);
/**
* Format of the releaser used by the database system.
* Releases nothing, the key, the data or both.
* All standard releasers use aFree to release.
* @param key Key of the database entry
* @param data Data of the database entry
* @param which What is being requested to be released
* @public
* @see enum DBReleaseOption
* @see #db_default_releaser()
* @see #db_custom_release()
*/
typedef void (*DBReleaser)(union DBKey key, struct DBData data, enum DBReleaseOption which);
/**
* Database iterator.
*
* Supports forward iteration, backward iteration and removing entries from the database.
* The iterator is initially positioned before the first entry of the database.
*
* While the iterator exists the database is locked internally, so invoke
* struct DBIterator#destroy() as soon as possible.
*
* @public
* @see struct DBMap
*/
struct DBIterator {
/**
* Fetches the first entry in the database.
* Returns the data of the entry.
* Puts the key in out_key, if out_key is not NULL.
* @param self Iterator
* @param out_key Key of the entry
* @return Data of the entry
* @protected
*/
struct DBData *(*first)(struct DBIterator *self, union DBKey *out_key);
/**
* Fetches the last entry in the database.
* Returns the data of the entry.
* Puts the key in out_key, if out_key is not NULL.
* @param self Iterator
* @param out_key Key of the entry
* @return Data of the entry
* @protected
*/
struct DBData *(*last)(struct DBIterator *self, union DBKey *out_key);
/**
* Fetches the next entry in the database.
* Returns the data of the entry.
* Puts the key in out_key, if out_key is not NULL.
* @param self Iterator
* @param out_key Key of the entry
* @return Data of the entry
* @protected
*/
struct DBData *(*next)(struct DBIterator *self, union DBKey *out_key);
/**
* Fetches the previous entry in the database.
* Returns the data of the entry.
* Puts the key in out_key, if out_key is not NULL.
* @param self Iterator
* @param out_key Key of the entry
* @return Data of the entry
* @protected
*/
struct DBData *(*prev)(struct DBIterator *self, union DBKey *out_key);
/**
* Returns true if the fetched entry exists.
* The databases entries might have NULL data, so use this to to test if
* the iterator is done.
* @param self Iterator
* @return true is the entry exists
* @protected
*/
bool (*exists)(struct DBIterator *self);
/**
* Removes the current entry from the database.
*
* NOTE: struct DBIterator#exists() will return false until another
* entry is fetched.
*
* Puts data of the removed entry in out_data, if out_data is not NULL.
* @param self Iterator
* @param out_data Data of the removed entry.
* @return 1 if entry was removed, 0 otherwise
* @protected
* @see struct DBMap#remove()
*/
int (*remove)(struct DBIterator *self, struct DBData *out_data);
/**
* Destroys this iterator and unlocks the database.
* @param self Iterator
* @protected
*/
void (*destroy)(struct DBIterator *self);
};
/**
* Public interface of a database. Only contains functions.
* All the functions take the interface as the first argument.
* @public
* @see #db_alloc()
*/
struct DBMap {
/**
* Returns a new iterator for this database.
* The iterator keeps the database locked until it is destroyed.
* The database will keep functioning normally but will only free internal
* memory when unlocked, so destroy the iterator as soon as possible.
* @param self Database
* @return New iterator
* @protected
*/
struct DBIterator *(*iterator)(struct DBMap *self);
/**
* Returns true if the entry exists.
* @param self Database
* @param key Key that identifies the entry
* @return true is the entry exists
* @protected
*/
bool (*exists)(struct DBMap *self, union DBKey key);
/**
* Get the data of the entry identified by the key.
* @param self Database
* @param key Key that identifies the entry
* @return Data of the entry or NULL if not found
* @protected
*/
struct DBData *(*get)(struct DBMap *self, union DBKey key);
/**
* Just calls struct DBMap#vgetall().
*
* Get the data of the entries matched by match
.
* It puts a maximum of max
entries into buf
.
* If buf
is NULL, it only counts the matches.
* Returns the number of entries that matched.
* NOTE: if the value returned is greater than max
, only the
* first max
entries found are put into the buffer.
* @param self Database
* @param buf Buffer to put the data of the matched entries
* @param max Maximum number of data entries to be put into buf
* @param match Function that matches the database entries
* @param ... Extra arguments for match
* @return The number of entries that matched
* @protected
* @see struct DBMap#vgetall()
*/
unsigned int (*getall)(struct DBMap *self, struct DBData **buf, unsigned int max, DBMatcher match, ...);
/**
* Get the data of the entries matched by match
.
* It puts a maximum of max
entries into buf
.
* If buf
is NULL, it only counts the matches.
* Returns the number of entries that matched.
* NOTE: if the value returned is greater than max
, only the
* first max
entries found are put into the buffer.
* @param self Database
* @param buf Buffer to put the data of the matched entries
* @param max Maximum number of data entries to be put into buf
* @param match Function that matches the database entries
* @param ... Extra arguments for match
* @return The number of entries that matched
* @protected
* @see struct DBMap#getall()
*/
unsigned int (*vgetall)(struct DBMap *self, struct DBData **buf, unsigned int max, DBMatcher match, va_list args);
/**
* Just calls struct DBMap#vensure().
*
* Get the data of the entry identified by the key. If the entry does
* not exist, an entry is added with the data returned by `create`.
*
* @param self Database
* @param key Key that identifies the entry
* @param create Function used to create the data if the entry doesn't exist
* @param ... Extra arguments for create
* @return Data of the entry
* @protected
* @see struct DBMap#vensure()
*/
struct DBData *(*ensure)(struct DBMap *self, union DBKey key, DBCreateData create, ...);
/**
* Get the data of the entry identified by the key.
* If the entry does not exist, an entry is added with the data returned by
* create
.
* @param self Database
* @param key Key that identifies the entry
* @param create Function used to create the data if the entry doesn't exist
* @param args Extra arguments for create
* @return Data of the entry
* @protected
* @see struct DBMap#ensure()
*/
struct DBData *(*vensure)(struct DBMap *self, union DBKey key, DBCreateData create, va_list args);
/**
* Put the data identified by the key in the database.
* Puts the previous data in out_data, if out_data is not NULL.
* NOTE: Uses the new key, the old one is released.
* @param self Database
* @param key Key that identifies the data
* @param data Data to be put in the database
* @param out_data Previous data if the entry exists
* @return 1 if if the entry already exists, 0 otherwise
* @protected
*/
int (*put)(struct DBMap *self, union DBKey key, struct DBData data, struct DBData *out_data);
/**
* Remove an entry from the database.
* Puts the previous data in out_data, if out_data is not NULL.
* NOTE: The key (of the database) is released.
* @param self Database
* @param key Key that identifies the entry
* @param out_data Previous data if the entry exists
* @return 1 if if the entry already exists, 0 otherwise
* @protected
*/
int (*remove)(struct DBMap *self, union DBKey key, struct DBData *out_data);
/**
* Just calls struct DBMap#vforeach().
*
* Apply func
to every entry in the database.
* Returns the sum of values returned by func.
* @param self Database
* @param func Function to be applied
* @param ... Extra arguments for func
* @return Sum of the values returned by func
* @protected
* @see struct DBMap#vforeach()
*/
int (*foreach)(struct DBMap *self, DBApply func, ...);
/**
* Apply func
to every entry in the database.
* Returns the sum of values returned by func.
* @param self Database
* @param func Function to be applied
* @param args Extra arguments for func
* @return Sum of the values returned by func
* @protected
* @see struct DBMap#foreach()
*/
int (*vforeach)(struct DBMap *self, DBApply func, va_list args);
/**
* Just calls struct DBMap#vclear().
*
* Removes all entries from the database.
* Before deleting an entry, func is applied to it.
* Releases the key and the data.
* Returns the sum of values returned by func, if it exists.
* @param self Database
* @param func Function to be applied to every entry before deleting
* @param ... Extra arguments for func
* @return Sum of values returned by func
* @protected
* @see struct DBMap#vclear()
*/
int (*clear)(struct DBMap *self, DBApply func, ...);
/**
* Removes all entries from the database.
* Before deleting an entry, func is applied to it.
* Releases the key and the data.
* Returns the sum of values returned by func, if it exists.
* @param self Database
* @param func Function to be applied to every entry before deleting
* @param args Extra arguments for func
* @return Sum of values returned by func
* @protected
* @see struct DBMap#clear()
*/
int (*vclear)(struct DBMap *self, DBApply func, va_list args);
/**
* Just calls DBMap#vdestroy().
* Finalize the database, feeing all the memory it uses.
* Before deleting an entry, func is applied to it.
* Releases the key and the data.
* Returns the sum of values returned by func, if it exists.
* NOTE: This locks the database globally. Any attempt to insert or remove
* a database entry will give an error and be aborted (except for clearing).
* @param self Database
* @param func Function to be applied to every entry before deleting
* @param ... Extra arguments for func
* @return Sum of values returned by func
* @protected
* @see struct DBMap#vdestroy()
*/
int (*destroy)(struct DBMap *self, DBApply func, ...);
/**
* Finalize the database, feeing all the memory it uses.
* Before deleting an entry, func is applied to it.
* Returns the sum of values returned by func, if it exists.
* NOTE: This locks the database globally. Any attempt to insert or remove
* a database entry will give an error and be aborted (except for clearing).
* @param self Database
* @param func Function to be applied to every entry before deleting
* @param args Extra arguments for func
* @return Sum of values returned by func
* @protected
* @see struct DBMap#destroy()
*/
int (*vdestroy)(struct DBMap *self, DBApply func, va_list args);
/**
* Return the size of the database (number of items in the database).
* @param self Database
* @return Size of the database
* @protected
*/
unsigned int (*size)(struct DBMap *self);
/**
* Return the type of the database.
* @param self Database
* @return Type of the database
* @protected
*/
enum DBType (*type)(struct DBMap *self);
/**
* Return the options of the database.
* @param self Database
* @return Options of the database
* @protected
*/
enum DBOptions (*options)(struct DBMap *self);
};
// For easy access to the common functions.
#define db_exists(db,k) ( (db)->exists((db),(k)) )
#define idb_exists(db,k) ( (db)->exists((db),DB->i2key(k)) )
#define uidb_exists(db,k) ( (db)->exists((db),DB->ui2key(k)) )
#define strdb_exists(db,k) ( (db)->exists((db),DB->str2key(k)) )
#define i64db_exists(db,k) ( (db)->exists((db),DB->i642key(k)) )
#define ui64db_exists(db,k) ( (db)->exists((db),DB->ui642key(k)) )
// Get pointer-type data from DBMaps of various key types
#define db_get(db,k) ( DB->data2ptr((db)->get((db),(k))) )
#define idb_get(db,k) ( DB->data2ptr((db)->get((db),DB->i2key(k))) )
#define uidb_get(db,k) ( DB->data2ptr((db)->get((db),DB->ui2key(k))) )
#define strdb_get(db,k) ( DB->data2ptr((db)->get((db),DB->str2key(k))) )
#define i64db_get(db,k) ( DB->data2ptr((db)->get((db),DB->i642key(k))) )
#define ui64db_get(db,k) ( DB->data2ptr((db)->get((db),DB->ui642key(k))) )
// Get int-type data from DBMaps of various key types
#define db_iget(db,k) ( DB->data2i((db)->get((db),(k))) )
#define idb_iget(db,k) ( DB->data2i((db)->get((db),DB->i2key(k))) )
#define uidb_iget(db,k) ( DB->data2i((db)->get((db),DB->ui2key(k))) )
#define strdb_iget(db,k) ( DB->data2i((db)->get((db),DB->str2key(k))) )
#define i64db_iget(db,k) ( DB->data2i((db)->get((db),DB->i642key(k))) )
#define ui64db_iget(db,k) ( DB->data2i((db)->get((db),DB->ui642key(k))) )
// Get uint-type data from DBMaps of various key types
#define db_uiget(db,k) ( DB->data2ui((db)->get((db),(k))) )
#define idb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->i2key(k))) )
#define uidb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->ui2key(k))) )
#define strdb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->str2key(k))) )
#define i64db_uiget(db,k) ( DB->data2ui((db)->get((db),DB->i642key(k))) )
#define ui64db_uiget(db,k) ( DB->data2ui((db)->get((db),DB->ui642key(k))) )
// Put pointer-type data into DBMaps of various key types
#define db_put(db,k,d) ( (db)->put((db),(k),DB->ptr2data(d),NULL) )
#define idb_put(db,k,d) ( (db)->put((db),DB->i2key(k),DB->ptr2data(d),NULL) )
#define uidb_put(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->ptr2data(d),NULL) )
#define strdb_put(db,k,d) ( (db)->put((db),DB->str2key(k),DB->ptr2data(d),NULL) )
#define i64db_put(db,k,d) ( (db)->put((db),DB->i642key(k),DB->ptr2data(d),NULL) )
#define ui64db_put(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->ptr2data(d),NULL) )
// Put int-type data into DBMaps of various key types
#define db_iput(db,k,d) ( (db)->put((db),(k),DB->i2data(d),NULL) )
#define idb_iput(db,k,d) ( (db)->put((db),DB->i2key(k),DB->i2data(d),NULL) )
#define uidb_iput(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->i2data(d),NULL) )
#define strdb_iput(db,k,d) ( (db)->put((db),DB->str2key(k),DB->i2data(d),NULL) )
#define i64db_iput(db,k,d) ( (db)->put((db),DB->i642key(k),DB->i2data(d),NULL) )
#define ui64db_iput(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->i2data(d),NULL) )
// Put uint-type data into DBMaps of various key types
#define db_uiput(db,k,d) ( (db)->put((db),(k),DB->ui2data(d),NULL) )
#define idb_uiput(db,k,d) ( (db)->put((db),DB->i2key(k),DB->ui2data(d),NULL) )
#define uidb_uiput(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->ui2data(d),NULL) )
#define strdb_uiput(db,k,d) ( (db)->put((db),DB->str2key(k),DB->ui2data(d),NULL) )
#define i64db_uiput(db,k,d) ( (db)->put((db),DB->i642key(k),DB->ui2data(d),NULL) )
#define ui64db_uiput(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->ui2data(d),NULL) )
// Remove entry from DBMaps of various key types
#define db_remove(db,k) ( (db)->remove((db),(k),NULL) )
#define idb_remove(db,k) ( (db)->remove((db),DB->i2key(k),NULL) )
#define uidb_remove(db,k) ( (db)->remove((db),DB->ui2key(k),NULL) )
#define strdb_remove(db,k) ( (db)->remove((db),DB->str2key(k),NULL) )
#define i64db_remove(db,k) ( (db)->remove((db),DB->i642key(k),NULL) )
#define ui64db_remove(db,k) ( (db)->remove((db),DB->ui642key(k),NULL) )
//These are discarding the possible vargs you could send to the function, so those
//that require vargs must not use these defines.
#define db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),(k),(f))) )
#define idb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->i2key(k),(f))) )
#define uidb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->ui2key(k),(f))) )
#define strdb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->str2key(k),(f))) )
#define i64db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->i642key(k),(f))) )
#define ui64db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->ui642key(k),(f))) )
// Database creation and destruction macros
#define idb_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_INT,(opt),sizeof(int))
#define uidb_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_UINT,(opt),sizeof(unsigned int))
#define strdb_alloc(opt,maxlen) DB->alloc(__FILE__,__func__,__LINE__,DB_STRING,(opt),(maxlen))
#define stridb_alloc(opt,maxlen) DB->alloc(__FILE__,__func__,__LINE__,DB_ISTRING,(opt),(maxlen))
#define i64db_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_INT64,(opt),sizeof(int64))
#define ui64db_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_UINT64,(opt),sizeof(uint64))
#define db_destroy(db) ( (db)->destroy((db),NULL) )
// Other macros
#define db_clear(db) ( (db)->clear((db),NULL) )
#define db_size(db) ( (db)->size(db) )
#define db_iterator(db) ( (db)->iterator(db) )
#define dbi_first(dbi) ( DB->data2ptr((dbi)->first((dbi),NULL)) )
#define dbi_last(dbi) ( DB->data2ptr((dbi)->last((dbi),NULL)) )
#define dbi_next(dbi) ( DB->data2ptr((dbi)->next((dbi),NULL)) )
#define dbi_prev(dbi) ( DB->data2ptr((dbi)->prev((dbi),NULL)) )
#define dbi_remove(dbi) ( (dbi)->remove((dbi),NULL) )
#define dbi_exists(dbi) ( (dbi)->exists(dbi) )
#define dbi_destroy(dbi) ( (dbi)->destroy(dbi) )
/*****************************************************************************
* (2) Section with public functions. *
* db_fix_options - Fix the options for a type of database. *
* db_default_cmp - Get the default comparator for a type of database. *
* db_default_hash - Get the default hasher for a type of database. *
* db_default_release - Get the default releaser for a type of database *
* with the fixed options. *
* db_custom_release - Get the releaser that behaves as specified. *
* db_alloc - Allocate a new database. *
* db_i2key - Manual cast from `int` to `union DBKey`. *
* db_ui2key - Manual cast from `unsigned int` to `union DBKey`. *
* db_str2key - Manual cast from `unsigned char *` to `union DBKey`.*
* db_i642key - Manual cast from `int64` to `union DBKey`. *
* db_ui642key - Manual cast from `uint64` to `union DBKey`. *
* db_i2data - Manual cast from `int` to `struct DBData`. *
* db_ui2data - Manual cast from `unsigned int` to `struct DBData`. *
* db_ptr2data - Manual cast from `void*` to `struct DBData`. *
* db_data2i - Gets `int` value from `struct DBData`. *
* db_data2ui - Gets `unsigned int` value from `struct DBData`. *
* db_data2ptr - Gets `void*` value from `struct DBData`. *
* db_init - Initializes the database system. *
* db_final - Finalizes the database system. *
*****************************************************************************/
struct db_interface {
/**
* Returns the fixed options according to the database type.
* Sets required options and unsets unsupported options.
* For numeric databases DB_OPT_DUP_KEY and DB_OPT_RELEASE_KEY are unset.
* @param type Type of the database
* @param options Original options of the database
* @return Fixed options of the database
* @private
* @see enum DBType
* @see enum DBOptions
* @see #db_default_release()
*/
enum DBOptions (*fix_options) (enum DBType type, enum DBOptions options);
/**
* Returns the default comparator for the type of database.
* @param type Type of database
* @return Comparator for the type of database or NULL if unknown database
* @public
* @see enum DBType
* @see #DBComparator
*/
DBComparator (*default_cmp) (enum DBType type);
/**
* Returns the default hasher for the specified type of database.
* @param type Type of database
* @return Hasher of the type of database or NULL if unknown database
* @public
* @see enum DBType
* @see #DBHasher
*/
DBHasher (*default_hash) (enum DBType type);
/**
* Returns the default releaser for the specified type of database with the
* specified options.
*
* NOTE: the options are fixed by #db_fix_options() before choosing the
* releaser.
*
* @param type Type of database
* @param options Options of the database
* @return Default releaser for the type of database with the fixed options
* @public
* @see enum DBType
* @see enum DBOptions
* @see #DBReleaser
* @see #db_fix_options()
* @see #db_custom_release()
*/
DBReleaser (*default_release) (enum DBType type, enum DBOptions options);
/**
* Returns the releaser that behaves as which
specifies.
* @param which Defines what the releaser releases
* @return Releaser for the specified release options
* @public
* @see enum DBReleaseOption
* @see #DBReleaser
* @see #db_default_release()
*/
DBReleaser (*custom_release) (enum DBReleaseOption which);
/**
* Allocate a new database of the specified type.
*
* It uses the default comparator, hasher and releaser of the specified
* database type and fixed options.
*
* NOTE: the options are fixed by #db_fix_options() before creating the
* database.
*
* @param file File where the database is being allocated
* @param line Line of the file where the database is being allocated
* @param type Type of database
* @param options Options of the database
* @param maxlen Maximum length of the string to be used as key in string
* databases. If 0, the maximum number of maxlen is used (64K).
* @return The interface of the database
* @public
* @see enum DBType
* @see struct DBMap
* @see #db_default_cmp()
* @see #db_default_hash()
* @see #db_default_release()
* @see #db_fix_options()
*/
struct DBMap *(*alloc) (const char *file, const char *func, int line, enum DBType type, enum DBOptions options, unsigned short maxlen);
/**
* Manual cast from 'int' to the union DBKey.
* @param key Key to be casted
* @return The key as a DBKey union
* @public
*/
union DBKey (*i2key) (int key);
/**
* Manual cast from 'unsigned int' to the union DBKey.
* @param key Key to be casted
* @return The key as a DBKey union
* @public
*/
union DBKey (*ui2key) (unsigned int key);
/**
* Manual cast from 'unsigned char *' to the union DBKey.
* @param key Key to be casted
* @return The key as a DBKey union
* @public
*/
union DBKey (*str2key) (const char *key);
/**
* Manual cast from 'int64' to the union DBKey.
* @param key Key to be casted
* @return The key as a DBKey union
* @public
*/
union DBKey (*i642key) (int64 key);
/**
* Manual cast from 'uint64' to the union DBKey.
* @param key Key to be casted
* @return The key as a DBKey union
* @public
*/
union DBKey (*ui642key) (uint64 key);
/**
* Manual cast from 'int' to the struct DBData.
* @param data Data to be casted
* @return The data as a DBData struct
* @public
*/
struct DBData (*i2data) (int data);
/**
* Manual cast from 'unsigned int' to the struct DBData.
* @param data Data to be casted
* @return The data as a DBData struct
* @public
*/
struct DBData (*ui2data) (unsigned int data);
/**
* Manual cast from 'void *' to the struct DBData.
* @param data Data to be casted
* @return The data as a DBData struct
* @public
*/
struct DBData (*ptr2data) (void *data);
/**
* Gets int type data from struct DBData.
* If data is not int type, returns 0.
* @param data Data
* @return Integer value of the data.
* @public
*/
int (*data2i) (struct DBData *data);
/**
* Gets unsigned int type data from struct DBData.
* If data is not unsigned int type, returns 0.
* @param data Data
* @return Unsigned int value of the data.
* @public
*/
unsigned int (*data2ui) (struct DBData *data);
/**
* Gets void* type data from struct DBData.
* If data is not void* type, returns NULL.
* @param data Data
* @return Void* value of the data.
* @public
*/
void* (*data2ptr) (struct DBData *data);
/**
* Initialize the database system.
* @public
* @see #db_final(void)
*/
void (*init) (void);
/**
* Finalize the database system.
* Frees the memory used by the block reusage system.
* @public
* @see #db_init(void)
*/
void (*final) (void);
};
// Link DB System - From jAthena
struct linkdb_node {
struct linkdb_node *next;
struct linkdb_node *prev;
void *key;
void *data;
};
typedef void (*LinkDBFunc)(void* key, void* data, va_list args);
#ifdef HERCULES_CORE
void linkdb_insert (struct linkdb_node** head, void *key, void* data); // Doesn't take into account duplicate keys
void linkdb_replace (struct linkdb_node** head, void *key, void* data); // Takes into account duplicate keys
void* linkdb_search (struct linkdb_node** head, void *key);
void* linkdb_erase (struct linkdb_node** head, void *key);
void linkdb_final (struct linkdb_node** head);
void linkdb_vforeach(struct linkdb_node** head, LinkDBFunc func, va_list ap);
void linkdb_foreach (struct linkdb_node** head, LinkDBFunc func, ...);
void db_defaults(void);
#endif // HERCULES_CORE
HPShared struct db_interface *DB;
/**
* Array Helper macros
*/
/**
* Finds an entry in an array.
*
* @code
* ARR_FIND(0, size, i, list[i] == target);
* @endcode
*
* To differentiate between the found and not found cases, the caller code can
* compare _end and _var after this macro returns.
*
* @param _start Starting index (ex: 0).
* @param _end End index (ex: size of the array).
* @param _var Index variable.
* @param _cmp Search expression (should return true when the target entry is found).
*/
#define ARR_FIND(_start, _end, _var, _cmp) \
do { \
for ((_var) = (_start); (_var) < (_end); ++(_var)) \
if (_cmp) \
break; \
} while(false)
/**
* Moves an entry of the array.
*
* @code
* ARR_MOVE(i, 0, list, int); // move index i to index 0
* @endcode
*
* @remark
* Use ARR_MOVERIGHT/ARR_MOVELEFT if _from and _to are direct numbers.
*
* @param _from Initial index of the entry.
* @param _to Target index of the entry.
* @param _arr Array.
* @param _type Type of entry.
*/
#define ARR_MOVE(_from, _to, _arr, _type) \
do { \
if ((_from) != (_to)) { \
_type _backup_; \
memmove(&_backup_, (_arr)+(_from), sizeof(_type)); \
if ((_from) < (_to)) \
memmove((_arr)+(_from), (_arr)+(_from)+1, ((_to)-(_from))*sizeof(_type)); \
else if ((_from) > (_to)) \
memmove((_arr)+(_to)+1, (_arr)+(_to), ((_from)-(_to))*sizeof(_type)); \
memmove((_arr)+(_to), &_backup_, sizeof(_type)); \
} \
} while(false)
/**
* Moves an entry of the array to the right.
*
* @code
* ARR_MOVERIGHT(1, 4, list, int); // move index 1 to index 4
* @endcode
*
* @param _from Initial index of the entry.
* @param _to Target index of the entry.
* @param _arr Array.
* @param _type Type of entry.
*/
#define ARR_MOVERIGHT(_from, _to, _arr, _type) \
do { \
_type _backup_; \
memmove(&_backup_, (_arr)+(_from), sizeof(_type)); \
memmove((_arr)+(_from), (_arr)+(_from)+1, ((_to)-(_from))*sizeof(_type)); \
memmove((_arr)+(_to), &_backup_, sizeof(_type)); \
} while(false)
/**
* Moves an entry of the array to the left.
*
* @code
* ARR_MOVELEFT(3, 0, list, int); // move index 3 to index 0
* @endcode
*
* @param _from Initial index of the entry.
* @param _end Target index of the entry.
* @param _arr Array.
* @param _type Type of entry.
*/
#define ARR_MOVELEFT(_from, _to, _arr, _type) \
do { \
_type _backup_; \
memmove(&_backup_, (_arr)+(_from), sizeof(_type)); \
memmove((_arr)+(_to)+1, (_arr)+(_to), ((_from)-(_to))*sizeof(_type)); \
memmove((_arr)+(_to), &_backup_, sizeof(_type)); \
} while(false)
/**
* Vector library based on defines (dynamic array).
*
* @remark
* This library uses aMalloc, aRealloc, aFree.
*/
/**
* Declares an anonymous vector struct.
*
* @param _type Type of data to be contained.
*/
#define VECTOR_DECL(_type) \
struct { \
int _max_; \
int _len_; \
_type *_data_; \
}
/**
* Declares a named vector struct.
*
* @param _name Structure name.
* @param _type Type of data to be contained.
*/
#define VECTOR_STRUCT_DECL(_name, _type) \
struct _name { \
int _max_; \
int _len_; \
_type *_data_; \
}
/**
* Declares and initializes an anonymous vector variable.
*
* @param _type Type of data to be contained.
* @param _var Variable name.
*/
#define VECTOR_VAR(_type, _var) \
VECTOR_DECL(_type) _var = {0, 0, NULL}
/**
* Declares and initializes a named vector variable.
*
* @param _name Structure name.
* @param _var Variable name.
*/
#define VECTOR_STRUCT_VAR(_name, _var) \
struct _name _var = {0, 0, NULL}
/**
* Initializes a vector.
*
* @param _vec Vector.
*/
#define VECTOR_INIT(_vec) \
do { \
VECTOR_DATA(_vec) = NULL; \
VECTOR_CAPACITY(_vec) = 0; \
VECTOR_LENGTH(_vec) = 0; \
} while(false)
/**
* Returns the internal array of values.
*
* @param _vec Vector.
* @return Internal array of values.
*/
#define VECTOR_DATA(_vec) \
( (_vec)._data_ )
/**
* Returns the length of the vector (number of elements in use).
*
* @param _vec Vector
* @return Length
*/
#define VECTOR_LENGTH(_vec) \
( (_vec)._len_ )
/**
* Returns the capacity of the vector (number of elements allocated).
*
* @param _vec Vector.
* @return Capacity.
*/
#define VECTOR_CAPACITY(_vec) \
( (_vec)._max_ )
/**
* Returns the value at the target index.
*
* Assumes the index exists.
*
* @param _vec Vector.
* @param _idx Index.
* @return Value.
*/
#define VECTOR_INDEX(_vec, _idx) \
( VECTOR_DATA(_vec)[_idx] )
/**
* Returns the first value of the vector.
*
* Assumes the array is not empty.
*
* @param _vec Vector.
* @return First value.
*/
#define VECTOR_FIRST(_vec) \
( VECTOR_INDEX(_vec, 0) )
/**
* Returns the last value of the vector.
*
* Assumes the array is not empty.
*
* @param _vec Vector.
* @return Last value.
*/
#define VECTOR_LAST(_vec) \
( VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)-1) )
/**
* Resizes the vector.
*
* Excess values are discarded, new positions are zeroed.
*
* @param _vec Vector.
* @param _n New size.
*/
#define VECTOR_RESIZE(_vec, _n) \
do { \
if ((_n) > VECTOR_CAPACITY(_vec)) { \
/* increase size */ \
if (VECTOR_CAPACITY(_vec) == 0) \
VECTOR_DATA(_vec) = aMalloc((_n)*sizeof(VECTOR_FIRST(_vec))); /* allocate new */ \
else \
VECTOR_DATA(_vec) = aRealloc(VECTOR_DATA(_vec), (_n)*sizeof(VECTOR_FIRST(_vec))); /* reallocate */ \
memset(VECTOR_DATA(_vec)+VECTOR_LENGTH(_vec), 0, (VECTOR_CAPACITY(_vec)-VECTOR_LENGTH(_vec))*sizeof(VECTOR_FIRST(_vec))); /* clear new data */ \
VECTOR_CAPACITY(_vec) = (_n); /* update capacity */ \
} else if ((_n) == 0 && VECTOR_CAPACITY(_vec) > 0) { \
/* clear vector */ \
aFree(VECTOR_DATA(_vec)); VECTOR_DATA(_vec) = NULL; /* free data */ \
VECTOR_CAPACITY(_vec) = 0; /* clear capacity */ \
VECTOR_LENGTH(_vec) = 0; /* clear length */ \
} else if ((_n) < VECTOR_CAPACITY(_vec)) { \
/* reduce size */ \
VECTOR_DATA(_vec) = aRealloc(VECTOR_DATA(_vec), (_n)*sizeof(VECTOR_FIRST(_vec))); /* reallocate */ \
VECTOR_CAPACITY(_vec) = (_n); /* update capacity */ \
if ((_n) - VECTOR_LENGTH(_vec) > 0) \
VECTOR_LENGTH(_vec) = (_n); /* update length */ \
} \
} while(false)
/**
* Ensures that the array has the target number of empty positions.
*
* Increases the capacity in multiples of _step.
*
* @param _vec Vector.
* @param _n Desired empty positions.
* @param _step Increase.
*/
#define VECTOR_ENSURE(_vec, _n, _step) \
do { \
int _newcapacity_ = VECTOR_CAPACITY(_vec); \
while ((_n) + VECTOR_LENGTH(_vec) > _newcapacity_) \
_newcapacity_ += (_step); \
if (_newcapacity_ > VECTOR_CAPACITY(_vec)) \
VECTOR_RESIZE(_vec, _newcapacity_); \
} while(false)
/**
* Inserts a zeroed value in the target index.
*
* Assumes the index is valid and there is enough capacity.
*
* @param _vec Vector.
* @param _idx Index.
*/
#define VECTOR_INSERTZEROED(_vec, _idx) \
do { \
if ((_idx) < VECTOR_LENGTH(_vec)) /* move data */ \
memmove(&VECTOR_INDEX(_vec, (_idx)+1), &VECTOR_INDEX(_vec, _idx), (VECTOR_LENGTH(_vec)-(_idx))*sizeof(VECTOR_FIRST(_vec))); \
memset(&VECTOR_INDEX(_vec, _idx), 0, sizeof(VECTOR_INDEX(_vec, _idx))); /* set zeroed value */ \
++VECTOR_LENGTH(_vec); /* increase length */ \
} while(false)
/**
* Inserts a value in the target index (using the '=' operator).
*
* Assumes the index is valid and there is enough capacity.
*
* @param _vec Vector.
* @param _idx Index.
* @param _val Value.
*/
#define VECTOR_INSERT(_vec, _idx, _val) \
do { \
if ((_idx) < VECTOR_LENGTH(_vec)) /* move data */ \
memmove(&VECTOR_INDEX(_vec, (_idx)+1), &VECTOR_INDEX(_vec, _idx), (VECTOR_LENGTH(_vec)-(_idx))*sizeof(VECTOR_FIRST(_vec))); \
VECTOR_INDEX(_vec, _idx) = (_val); /* set value */ \
++VECTOR_LENGTH(_vec); /* increase length */ \
} while(false)
/**
* Inserts a value in the target index (using memcpy).
*
* Assumes the index is valid and there is enough capacity.
*
* @param _vec Vector.
* @param _idx Index.
* @param _val Value.
*/
#define VECTOR_INSERTCOPY(_vec, _idx, _val) \
VECTOR_INSERTARRAY(_vec, _idx, &(_val), 1)
/**
* Inserts the values of the array in the target index (using memcpy).
*
* Assumes the index is valid and there is enough capacity.
*
* @param _vec Vector.
* @param _idx Index.
* @param _pval Array of values.
* @param _n Number of values.
*/
#define VECTOR_INSERTARRAY(_vec, _idx, _pval, _n) \
do { \
if ((_idx) < VECTOR_LENGTH(_vec)) /* move data */ \
memmove(&VECTOR_INDEX(_vec, (_idx)+(_n)), &VECTOR_INDEX(_vec, _idx), (VECTOR_LENGTH(_vec)-(_idx))*sizeof(VECTOR_FIRST(_vec))); \
memcpy(&VECTOR_INDEX(_vec, _idx), (_pval), (_n)*sizeof(VECTOR_FIRST(_vec))); /* set values */ \
VECTOR_LENGTH(_vec) += (_n); /* increase length */ \
} while(false)
/**
* Inserts a zeroed value in the end of the vector.
*
* Assumes there is enough capacity.
*
* @param _vec Vector.
*/
#define VECTOR_PUSHZEROED(_vec) \
do { \
memset(&VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)), 0, sizeof(VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)))); /* set zeroed value */ \
++VECTOR_LENGTH(_vec); /* increase length */ \
} while(false)
/**
* Appends a value at the end of the vector (using the '=' operator).
*
* Assumes there is enough capacity.
*
* @param _vec Vector.
* @param _val Value.
*/
#define VECTOR_PUSH(_vec, _val) \
do { \
VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)) = (_val); /* set value */ \
++VECTOR_LENGTH(_vec); /* increase length */ \
}while(false)
/**
* Appends a value at the end of the vector (using memcpy).
*
* Assumes there is enough capacity.
*
* @param _vec Vector.
* @param _val Value.
*/
#define VECTOR_PUSHCOPY(_vec, _val) \
VECTOR_PUSHARRAY(_vec, &(_val), 1)
/**
* Appends the values of the array at the end of the vector (using memcpy).
*
* Assumes there is enough capacity.
*
* @param _vec Vector.
* @param _pval Array of values.
* @param _n Number of values.
*/
#define VECTOR_PUSHARRAY(_vec, _pval, _n) \
do { \
memcpy(&VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)), (_pval), (_n)*sizeof(VECTOR_FIRST(_vec))); /* set values */ \
VECTOR_LENGTH(_vec) += (_n); /* increase length */ \
} while(false)
/**
* Removes and returns the last value of the vector.
*
* Assumes the array is not empty.
*
* @param _vec Vector.
* @return Removed value.
*/
#define VECTOR_POP(_vec) \
( VECTOR_INDEX(_vec, --VECTOR_LENGTH(_vec)) )
/**
* Removes the last N values of the vector and returns the value of the last pop.
*
* Assumes there are enough values.
*
* @param _vec Vector.
* @param _n Number of pops.
* @return Last removed value.
*/
#define VECTOR_POPN(_vec, _n) \
( VECTOR_INDEX(_vec, (VECTOR_LENGTH(_vec) -= (_n))) )
/**
* Removes the target index from the vector.
*
* Assumes the index is valid and there are enough values.
*
* @param _vec Vector.
* @param _idx Index.
*/
#define VECTOR_ERASE(_vec, _idx) \
VECTOR_ERASEN(_vec, _idx, 1)
/**
* Removes N values from the target index of the vector.
*
* Assumes the index is valid and there are enough values.
*
* @param _vec Vector.
* @param _idx Index.
* @param _n Number of values to remove.
*/
#define VECTOR_ERASEN(_vec, _idx, _n) \
do { \
if ((_idx) < VECTOR_LENGTH(_vec)-(_n) ) /* move data */ \
memmove(&VECTOR_INDEX(_vec, _idx), &VECTOR_INDEX(_vec, (_idx)+(_n)), (VECTOR_LENGTH(_vec)-((_idx)+(_n)))*sizeof(VECTOR_FIRST(_vec))); \
VECTOR_LENGTH(_vec) -= (_n); /* decrease length */ \
} while(false)
/**
* Removes all values from the vector.
*
* Does not free the allocated data.
*/
#define VECTOR_TRUNCATE(_vec) \
do { \
VECTOR_LENGTH(_vec) = 0; \
} while (false)
/**
* Clears the vector, freeing allocated data.
*
* @param _vec Vector.
*/
#define VECTOR_CLEAR(_vec) \
do { \
if (VECTOR_CAPACITY(_vec) > 0) { \
aFree(VECTOR_DATA(_vec)); VECTOR_DATA(_vec) = NULL; /* clear allocated array */ \
VECTOR_CAPACITY(_vec) = 0; /* clear capacity */ \
VECTOR_LENGTH(_vec) = 0; /* clear length */ \
} \
} while(false)
/**
* Binary heap library based on defines.
*
* Uses the VECTOR defines above.
* Uses aMalloc, aRealloc, aFree.
*
* @warning
* BHEAP implementation details affect behaviour of A* pathfinding.
*/
/**
* Declares an anonymous binary heap struct.
*
* @param _type Type of data.
*/
#define BHEAP_DECL(_type) \
VECTOR_DECL(_type)
/**
* Declares a named binary heap struct.
*
* @param _name Structure name.
* @param _type Type of data.
*/
#define BHEAP_STRUCT_DECL(_name, _type) \
VECTOR_STRUCT_DECL(_name, _type)
/**
* Declares and initializes an anonymous binary heap variable.
*
* @param _type Type of data.
* @param _var Variable name.
*/
#define BHEAP_VAR(_type, _var) \
VECTOR_VAR(_type, _var)
/**
* Declares and initializes a named binary heap variable.
*
* @param _name Structure name.
* @param _var Variable name.
*/
#define BHEAP_STRUCT_VAR(_name, _var) \
VECTOR_STRUCT_VAR(_name, _var)
/**
* Initializes a heap.
*
* @param _heap Binary heap.
*/
#define BHEAP_INIT(_heap) \
VECTOR_INIT(_heap)
/**
* Returns the internal array of values.
*
* @param _heap Binary heap.
* @return Internal array of values.
*/
#define BHEAP_DATA(_heap) \
VECTOR_DATA(_heap)
/**
* Returns the length of the heap.
*
* @param _heap Binary heap.
* @return Length.
*/
#define BHEAP_LENGTH(_heap) \
VECTOR_LENGTH(_heap)
/**
* Returns the capacity of the heap.
*
* @param _heap Binary heap.
* @return Capacity.
*/
#define BHEAP_CAPACITY(_heap) \
VECTOR_CAPACITY(_heap)
/**
* Ensures that the heap has the target number of empty positions.
*
* Increases the capacity in multiples of _step.
*
* @param _heap Binary heap.
* @param _n Required empty positions.
* @param _step Increase.
*/
#define BHEAP_ENSURE(_heap, _n, _step) \
VECTOR_ENSURE(_heap, _n, _step)
/**
* Returns the top value of the heap.
*
* Assumes the heap is not empty.
*
* @param _heap Binary heap.
* @return Value at the top.
*/
#define BHEAP_PEEK(_heap) \
VECTOR_INDEX(_heap, 0)
/**
* Inserts a value in the heap (using the '=' operator).
*
* Assumes there is enough capacity.
*
* The comparator takes two values as arguments, returns:
* - negative if the first value is on the top
* - positive if the second value is on the top
* - 0 if they are equal
*
* @param _heap Binary heap.
* @param _val Value.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_PUSH(_heap, _val, _topcmp, _swp) \
do { \
int _i_ = VECTOR_LENGTH(_heap); \
VECTOR_PUSH(_heap, _val); /* insert at end */ \
while (_i_ > 0) { \
/* restore heap property in parents */ \
int _parent_ = (_i_-1)/2; \
if (_topcmp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)) < 0) \
break; /* done */ \
_swp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)); \
_i_ = _parent_; \
} \
} while(false)
/**
* Variant of BHEAP_PUSH used by A* implementation, matching client bheap.
*
* @see BHEAP_PUSH.
*
* @param _heap Binary heap.
* @param _val Value.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_PUSH2(_heap, _val, _topcmp, _swp) \
do { \
int _i_ = VECTOR_LENGTH(_heap); \
VECTOR_PUSH(_heap, _val); /* insert at end */ \
BHEAP_SIFTDOWN(_heap, 0, _i_, _topcmp, _swp); \
} while(false)
/**
* Removes the top value of the heap (using the '=' operator).
*
* Assumes the heap is not empty.
*
* The comparator takes two values as arguments, returns:
* - negative if the first value is on the top
* - positive if the second value is on the top
* - 0 if they are equal
*
* @param _heap Binary heap.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_POP(_heap, _topcmp, _swp) \
BHEAP_POPINDEX(_heap, 0, _topcmp, _swp)
/**
* Variant of BHEAP_POP used by A* implementation, matching client bheap.
*
* @see BHEAP_POP.
*
* @param _heap Binary heap.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_POP2(_heap, _topcmp, _swp) \
do { \
VECTOR_INDEX(_heap, 0) = VECTOR_POP(_heap); /* put last at index */ \
if (VECTOR_LENGTH(_heap) == 0) /* removed last, nothing to do */ \
break; \
BHEAP_SIFTUP(_heap, 0, _topcmp, _swp); \
} while(false)
/**
* Removes the target value of the heap (using the '=' operator).
*
* Assumes the index exists.
*
* The comparator takes two values as arguments, returns:
* - negative if the first value is on the top
* - positive if the second value is on the top
* - 0 if they are equal
*
* @param _heap Binary heap.
* @param _idx Index.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_POPINDEX(_heap, _idx, _topcmp, _swp) \
do { \
int _i_ = _idx; \
VECTOR_INDEX(_heap, _idx) = VECTOR_POP(_heap); /* put last at index */ \
if (_i_ >= VECTOR_LENGTH(_heap)) /* removed last, nothing to do */ \
break; \
while (_i_ > 0) { \
/* restore heap property in parents */ \
int _parent_ = (_i_-1)/2; \
if (_topcmp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)) < 0) \
break; /* done */ \
_swp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)); \
_i_ = _parent_; \
} \
while (_i_ < VECTOR_LENGTH(_heap)) { \
/* restore heap property in children */ \
int _lchild_ = _i_*2 + 1; \
int _rchild_ = _i_*2 + 2; \
if ((_lchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _lchild_)) <= 0) \
&& (_rchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _rchild_)) <= 0)) { \
break; /* done */ \
} else if (_rchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _lchild_), VECTOR_INDEX(_heap, _rchild_)) <= 0) { \
/* left child */ \
_swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _lchild_)); \
_i_ = _lchild_; \
} else { \
/* right child */ \
_swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _rchild_)); \
_i_ = _rchild_; \
} \
} \
} while(false)
/**
* Follow path up towards (but not all the way to) the root, swapping nodes
* until finding a place where the new item that was placed at _idx fits.
*
* Only goes as high as _startidx (usually 0).
*
* @param _heap Binary heap.
* @param _startidx Index of an ancestor of _idx.
* @param _idx Index of an inserted element.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_SIFTDOWN(_heap, _startidx, _idx, _topcmp, _swp) \
do { \
int _i2_ = _idx; \
while (_i2_ > _startidx) { \
/* restore heap property in parents */ \
int _parent_ = (_i2_-1)/2; \
if (_topcmp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i2_)) <= 0) \
break; /* done */ \
_swp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i2_)); \
_i2_ = _parent_; \
} \
} while(false)
/**
* Repeatedly swap the smaller child with parent, after placing a new item at _idx.
*
* @param _heap Binary heap.
* @param _idx Index of an inserted element.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_SIFTUP(_heap, _idx, _topcmp, _swp) \
do { \
int _i_ = _idx; \
int _lchild_ = _i_*2 + 1; \
while (_lchild_ < VECTOR_LENGTH(_heap)) { \
/* restore heap property in children */ \
int _rchild_ = _i_*2 + 2; \
if (_rchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _lchild_), VECTOR_INDEX(_heap, _rchild_)) < 0) { \
/* left child */ \
_swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _lchild_)); \
_i_ = _lchild_; \
} else { \
/* right child */ \
_swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _rchild_)); \
_i_ = _rchild_; \
} \
_lchild_ = _i_*2 + 1; \
} \
BHEAP_SIFTDOWN(_heap, _idx, _i_, _topcmp, _swp); \
} while(false)
/**
* Restores a heap (after modifying the item at _idx).
*
* @param _heap Binary heap.
* @param _idx Index.
* @param _topcmp Comparator.
* @param _swp Swapper.
*/
#define BHEAP_UPDATE(_heap, _idx, _topcmp, _swp) \
do { \
BHEAP_SIFTDOWN(_heap, 0, _idx, _topcmp, _swp); \
BHEAP_SIFTUP(_heap, _idx, _topcmp, _swp); \
} while(false)
/**
* Clears the binary heap, freeing allocated data.
*
* @param _heap Binary heap.
*/
#define BHEAP_CLEAR(_heap) \
VECTOR_CLEAR(_heap)
/**
* Generic comparator for a min-heap (minimum value at top).
*
* Returns -1 if v1 is smaller, 1 if v2 is smaller, 0 if equal.
*
* @warning
* Arguments may be evaluted more than once.
*
* @param v1 First value.
* @param v2 Second value.
* @return negative if v1 is top, positive if v2 is top, 0 if equal.
*/
#define BHEAP_MINTOPCMP(v1, v2) \
( (v1) == (v2) ? 0 : (v1) < (v2) ? -1 : 1 )
/**
* Generic comparator for a max-heap (maximum value at top).
*
* Returns -1 if v1 is bigger, 1 if v2 is bigger, 0 if equal.
*
* @warning
* Arguments may be evaluted more than once.
*
* @param v1 First value.
* @param v2 Second value.
* @return negative if v1 is top, positive if v2 is top, 0 if equal.
*/
#define BHEAP_MAXTOPCMP(v1, v2) \
( (v1) == (v2) ? 0 : (v1) > (v2) ? -1 : 1 )
#endif /* COMMON_DB_H */