/** * This file is part of Hercules. * http://herc.ws - http://github.com/HerculesWS/Hercules * * Copyright (C) 2012-2018 Hercules Dev Team * Copyright (C) Athena Dev Teams * * Hercules is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /*****************************************************************************\ * This file is separated in two sections: * * (1) public typedefs, enums, unions, structures and defines * * (2) public functions * * * * Notes on the release system: * * Whenever an entry is removed from the database both the key and the * * data are requested to be released. * * At least one entry is removed when replacing an entry, removing an * * entry, clearing the database or destroying the database. * * What is actually released is defined by the release function, the * * functions of the database only ask for the key and/or data to be * * released. * * * * TODO: * * - create a custom database allocator * * - see what functions need or should be added to the database interface * * * * HISTORY: * * 2013/08/25 - Added int64/uint64 support for keys * * 2012/03/09 - Added enum for data types (int, uint, void*) * * 2007/11/09 - Added an iterator to the database. * * 2.1 (Athena build #???#) - Portability fix * * - Fixed the portability of casting to union and added the functions * * struct DBMap#ensure() and struct DBMap#clear(). * * 2.0 (Athena build 4859) - Transition version * * - Almost everything recoded with a strategy similar to objects, * * database structure is maintained. * * 1.0 (up to Athena build 4706) * * - Previous database system. * * * * @version 2.1 (Athena build #???#) - Portability fix * * @author (Athena build 4859) Flavio @ Amazon Project * * @author (up to Athena build 4706) Athena Dev Teams * * @encoding US-ASCII * * @see common#db.c * \*****************************************************************************/ #ifndef COMMON_DB_H #define COMMON_DB_H #include "common/hercules.h" #include /***************************************************************************** * (1) Section with public typedefs, enums, unions, structures and defines. * * enum DBReleaseOption - Enumeration of release options. * * enum DBType - Enumeration of database types. * * enum DBOptions - Bitfield enumeration of database options. * * union DBKey - Union of used key types. * * enum DBDataType - Enumeration of data types. * * struct DBData - Struct for used data types. * * DBApply - Format of functions applied to the databases. * * DBMatcher - Format of matchers used in struct DBMap#getall(). * * DBComparator - Format of the comparators used by the databases. * * DBHasher - Format of the hashers used by the databases. * * DBReleaser - Format of the releasers used by the databases. * * struct DBIterator - Database iterator. * * struct DBMap - Database interface. * *****************************************************************************/ /** * Bitfield with what should be released by the releaser function (if the * function supports it). * @public * @see #DBReleaser * @see #db_custom_release() */ enum DBReleaseOption { DB_RELEASE_NOTHING = 0x0, DB_RELEASE_KEY = 0x1, DB_RELEASE_DATA = 0x2, DB_RELEASE_BOTH = DB_RELEASE_KEY|DB_RELEASE_DATA, }; /** * Supported types of database. * * See #db_fix_options() for restrictions of the types of databases. * * @param DB_INT Uses int's for keys * @param DB_UINT Uses unsigned int's for keys * @param DB_STRING Uses strings for keys. * @param DB_ISTRING Uses case insensitive strings for keys. * @param DB_INT64 Uses int64's for keys * @param DB_UINT64 Uses uint64's for keys * @public * @see enum DBOptions * @see union DBKey * @see #db_fix_options() * @see #db_default_cmp() * @see #db_default_hash() * @see #db_default_release() * @see #db_alloc() */ enum DBType { DB_INT, DB_UINT, DB_STRING, DB_ISTRING, DB_INT64, DB_UINT64, }; /** * Bitfield of options that define the behavior of the database. * * See #db_fix_options() for restrictions of the types of databases. * * @param DB_OPT_BASE Base options: does not duplicate keys, releases nothing * and does not allow NULL keys or NULL data. * @param DB_OPT_DUP_KEY Duplicates the keys internally. If DB_OPT_RELEASE_KEY * is defined, the real key is freed as soon as the entry is added. * @param DB_OPT_RELEASE_KEY Releases the key. * @param DB_OPT_RELEASE_DATA Releases the data whenever an entry is removed * from the database. * WARNING: for functions that return the data (like struct DBMap#remove()), * a dangling pointer will be returned. * @param DB_OPT_RELEASE_BOTH Releases both key and data. * @param DB_OPT_ALLOW_NULL_KEY Allow NULL keys in the database. * @param DB_OPT_ALLOW_NULL_DATA Allow NULL data in the database. * @public * @see #db_fix_options() * @see #db_default_release() * @see #db_alloc() */ enum DBOptions { DB_OPT_BASE = 0x00, DB_OPT_DUP_KEY = 0x01, DB_OPT_RELEASE_KEY = 0x02, DB_OPT_RELEASE_DATA = 0x04, DB_OPT_RELEASE_BOTH = DB_OPT_RELEASE_KEY|DB_OPT_RELEASE_DATA, DB_OPT_ALLOW_NULL_KEY = 0x08, DB_OPT_ALLOW_NULL_DATA = 0x10, }; /** * Union of key types used by the database. * @param i Type of key for DB_INT databases * @param ui Type of key for DB_UINT databases * @param str Type of key for DB_STRING and DB_ISTRING databases * @public * @see enum DBType * @see struct DBMap#get() * @see struct DBMap#put() * @see struct DBMap#remove() */ union DBKey { int i; unsigned int ui; const char *str; char *mutstr; int64 i64; uint64 ui64; }; /** * Supported types of database data. * @param DB_DATA_INT Uses ints for data. * @param DB_DATA_UINT Uses unsigned ints for data. * @param DB_DATA_PTR Uses void pointers for data. * @public * @see struct DBData */ enum DBDataType { DB_DATA_INT, DB_DATA_UINT, DB_DATA_PTR, }; /** * Struct for data types used by the database. * @param type Type of data * @param u Union of available data types * @param u.i Data of int type * @param u.ui Data of unsigned int type * @param u.ptr Data of void* type * @public */ struct DBData { enum DBDataType type; union { int i; unsigned int ui; void *ptr; } u; }; /** * Format of functions that create the data for the key when the entry doesn't * exist in the database yet. * @param key Key of the database entry * @param args Extra arguments of the function * @return Data identified by the key to be put in the database * @public * @see struct DBMap#vensure() * @see struct DBMap#ensure() */ typedef struct DBData (*DBCreateData)(union DBKey key, va_list args); /** * Format of functions to be applied to an unspecified quantity of entries of * a database. * Any function that applies this function to the database will return the sum * of values returned by this function. * @param key Key of the database entry * @param data Data of the database entry * @param args Extra arguments of the function * @return Value to be added up by the function that is applying this * @public * @see struct DBMap#vforeach() * @see struct DBMap#foreach() * @see struct DBMap#vdestroy() * @see struct DBMap#destroy() */ typedef int (*DBApply)(union DBKey key, struct DBData *data, va_list args); /** * Format of functions that match database entries. * The purpose of the match depends on the function that is calling the matcher. * Returns 0 if it is a match, another number otherwise. * @param key Key of the database entry * @param data Data of the database entry * @param args Extra arguments of the function * @return 0 if a match, another number otherwise * @public * @see struct DBMap#getall() */ typedef int (*DBMatcher)(union DBKey key, struct DBData data, va_list args); /** * Format of the comparators used internally by the database system. * Compares key1 to key2. * Returns 0 is equal, negative if lower and positive is higher. * @param key1 Key being compared * @param key2 Key we are comparing to * @param maxlen Maximum number of characters used in DB_STRING and DB_ISTRING * databases. * @return 0 if equal, negative if lower and positive if higher * @public * @see #db_default_cmp() */ typedef int (*DBComparator)(union DBKey key1, union DBKey key2, unsigned short maxlen); /** * Format of the hashers used internally by the database system. * Creates the hash of the key. * @param key Key being hashed * @param maxlen Maximum number of characters used in DB_STRING and DB_ISTRING * databases. * @return Hash of the key * @public * @see #db_default_hash() */ typedef uint64 (*DBHasher)(union DBKey key, unsigned short maxlen); /** * Format of the releaser used by the database system. * Releases nothing, the key, the data or both. * All standard releasers use aFree to release. * @param key Key of the database entry * @param data Data of the database entry * @param which What is being requested to be released * @public * @see enum DBReleaseOption * @see #db_default_releaser() * @see #db_custom_release() */ typedef void (*DBReleaser)(union DBKey key, struct DBData data, enum DBReleaseOption which); /** * Database iterator. * * Supports forward iteration, backward iteration and removing entries from the database. * The iterator is initially positioned before the first entry of the database. * * While the iterator exists the database is locked internally, so invoke * struct DBIterator#destroy() as soon as possible. * * @public * @see struct DBMap */ struct DBIterator { /** * Fetches the first entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ struct DBData *(*first)(struct DBIterator *self, union DBKey *out_key); /** * Fetches the last entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ struct DBData *(*last)(struct DBIterator *self, union DBKey *out_key); /** * Fetches the next entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ struct DBData *(*next)(struct DBIterator *self, union DBKey *out_key); /** * Fetches the previous entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ struct DBData *(*prev)(struct DBIterator *self, union DBKey *out_key); /** * Returns true if the fetched entry exists. * The databases entries might have NULL data, so use this to to test if * the iterator is done. * @param self Iterator * @return true is the entry exists * @protected */ bool (*exists)(struct DBIterator *self); /** * Removes the current entry from the database. * * NOTE: struct DBIterator#exists() will return false until another * entry is fetched. * * Puts data of the removed entry in out_data, if out_data is not NULL. * @param self Iterator * @param out_data Data of the removed entry. * @return 1 if entry was removed, 0 otherwise * @protected * @see struct DBMap#remove() */ int (*remove)(struct DBIterator *self, struct DBData *out_data); /** * Destroys this iterator and unlocks the database. * @param self Iterator * @protected */ void (*destroy)(struct DBIterator *self); }; /** * Public interface of a database. Only contains functions. * All the functions take the interface as the first argument. * @public * @see #db_alloc() */ struct DBMap { /** * Returns a new iterator for this database. * The iterator keeps the database locked until it is destroyed. * The database will keep functioning normally but will only free internal * memory when unlocked, so destroy the iterator as soon as possible. * @param self Database * @return New iterator * @protected */ struct DBIterator *(*iterator)(struct DBMap *self); /** * Returns true if the entry exists. * @param self Database * @param key Key that identifies the entry * @return true is the entry exists * @protected */ bool (*exists)(struct DBMap *self, union DBKey key); /** * Get the data of the entry identified by the key. * @param self Database * @param key Key that identifies the entry * @return Data of the entry or NULL if not found * @protected */ struct DBData *(*get)(struct DBMap *self, union DBKey key); /** * Just calls struct DBMap#vgetall(). * * Get the data of the entries matched by match. * It puts a maximum of max entries into buf. * If buf is NULL, it only counts the matches. * Returns the number of entries that matched. * NOTE: if the value returned is greater than max, only the * first max entries found are put into the buffer. * @param self Database * @param buf Buffer to put the data of the matched entries * @param max Maximum number of data entries to be put into buf * @param match Function that matches the database entries * @param ... Extra arguments for match * @return The number of entries that matched * @protected * @see struct DBMap#vgetall() */ unsigned int (*getall)(struct DBMap *self, struct DBData **buf, unsigned int max, DBMatcher match, ...); /** * Get the data of the entries matched by match. * It puts a maximum of max entries into buf. * If buf is NULL, it only counts the matches. * Returns the number of entries that matched. * NOTE: if the value returned is greater than max, only the * first max entries found are put into the buffer. * @param self Database * @param buf Buffer to put the data of the matched entries * @param max Maximum number of data entries to be put into buf * @param match Function that matches the database entries * @param ... Extra arguments for match * @return The number of entries that matched * @protected * @see struct DBMap#getall() */ unsigned int (*vgetall)(struct DBMap *self, struct DBData **buf, unsigned int max, DBMatcher match, va_list args); /** * Just calls struct DBMap#vensure(). * * Get the data of the entry identified by the key. If the entry does * not exist, an entry is added with the data returned by `create`. * * @param self Database * @param key Key that identifies the entry * @param create Function used to create the data if the entry doesn't exist * @param ... Extra arguments for create * @return Data of the entry * @protected * @see struct DBMap#vensure() */ struct DBData *(*ensure)(struct DBMap *self, union DBKey key, DBCreateData create, ...); /** * Get the data of the entry identified by the key. * If the entry does not exist, an entry is added with the data returned by * create. * @param self Database * @param key Key that identifies the entry * @param create Function used to create the data if the entry doesn't exist * @param args Extra arguments for create * @return Data of the entry * @protected * @see struct DBMap#ensure() */ struct DBData *(*vensure)(struct DBMap *self, union DBKey key, DBCreateData create, va_list args); /** * Put the data identified by the key in the database. * Puts the previous data in out_data, if out_data is not NULL. * NOTE: Uses the new key, the old one is released. * @param self Database * @param key Key that identifies the data * @param data Data to be put in the database * @param out_data Previous data if the entry exists * @return 1 if if the entry already exists, 0 otherwise * @protected */ int (*put)(struct DBMap *self, union DBKey key, struct DBData data, struct DBData *out_data); /** * Remove an entry from the database. * Puts the previous data in out_data, if out_data is not NULL. * NOTE: The key (of the database) is released. * @param self Database * @param key Key that identifies the entry * @param out_data Previous data if the entry exists * @return 1 if if the entry already exists, 0 otherwise * @protected */ int (*remove)(struct DBMap *self, union DBKey key, struct DBData *out_data); /** * Just calls struct DBMap#vforeach(). * * Apply func to every entry in the database. * Returns the sum of values returned by func. * @param self Database * @param func Function to be applied * @param ... Extra arguments for func * @return Sum of the values returned by func * @protected * @see struct DBMap#vforeach() */ int (*foreach)(struct DBMap *self, DBApply func, ...); /** * Apply func to every entry in the database. * Returns the sum of values returned by func. * @param self Database * @param func Function to be applied * @param args Extra arguments for func * @return Sum of the values returned by func * @protected * @see struct DBMap#foreach() */ int (*vforeach)(struct DBMap *self, DBApply func, va_list args); /** * Just calls struct DBMap#vclear(). * * Removes all entries from the database. * Before deleting an entry, func is applied to it. * Releases the key and the data. * Returns the sum of values returned by func, if it exists. * @param self Database * @param func Function to be applied to every entry before deleting * @param ... Extra arguments for func * @return Sum of values returned by func * @protected * @see struct DBMap#vclear() */ int (*clear)(struct DBMap *self, DBApply func, ...); /** * Removes all entries from the database. * Before deleting an entry, func is applied to it. * Releases the key and the data. * Returns the sum of values returned by func, if it exists. * @param self Database * @param func Function to be applied to every entry before deleting * @param args Extra arguments for func * @return Sum of values returned by func * @protected * @see struct DBMap#clear() */ int (*vclear)(struct DBMap *self, DBApply func, va_list args); /** * Just calls DBMap#vdestroy(). * Finalize the database, feeing all the memory it uses. * Before deleting an entry, func is applied to it. * Releases the key and the data. * Returns the sum of values returned by func, if it exists. * NOTE: This locks the database globally. Any attempt to insert or remove * a database entry will give an error and be aborted (except for clearing). * @param self Database * @param func Function to be applied to every entry before deleting * @param ... Extra arguments for func * @return Sum of values returned by func * @protected * @see struct DBMap#vdestroy() */ int (*destroy)(struct DBMap *self, DBApply func, ...); /** * Finalize the database, feeing all the memory it uses. * Before deleting an entry, func is applied to it. * Returns the sum of values returned by func, if it exists. * NOTE: This locks the database globally. Any attempt to insert or remove * a database entry will give an error and be aborted (except for clearing). * @param self Database * @param func Function to be applied to every entry before deleting * @param args Extra arguments for func * @return Sum of values returned by func * @protected * @see struct DBMap#destroy() */ int (*vdestroy)(struct DBMap *self, DBApply func, va_list args); /** * Return the size of the database (number of items in the database). * @param self Database * @return Size of the database * @protected */ unsigned int (*size)(struct DBMap *self); /** * Return the type of the database. * @param self Database * @return Type of the database * @protected */ enum DBType (*type)(struct DBMap *self); /** * Return the options of the database. * @param self Database * @return Options of the database * @protected */ enum DBOptions (*options)(struct DBMap *self); }; // For easy access to the common functions. #define db_exists(db,k) ( (db)->exists((db),(k)) ) #define idb_exists(db,k) ( (db)->exists((db),DB->i2key(k)) ) #define uidb_exists(db,k) ( (db)->exists((db),DB->ui2key(k)) ) #define strdb_exists(db,k) ( (db)->exists((db),DB->str2key(k)) ) #define i64db_exists(db,k) ( (db)->exists((db),DB->i642key(k)) ) #define ui64db_exists(db,k) ( (db)->exists((db),DB->ui642key(k)) ) // Get pointer-type data from DBMaps of various key types #define db_get(db,k) ( DB->data2ptr((db)->get((db),(k))) ) #define idb_get(db,k) ( DB->data2ptr((db)->get((db),DB->i2key(k))) ) #define uidb_get(db,k) ( DB->data2ptr((db)->get((db),DB->ui2key(k))) ) #define strdb_get(db,k) ( DB->data2ptr((db)->get((db),DB->str2key(k))) ) #define i64db_get(db,k) ( DB->data2ptr((db)->get((db),DB->i642key(k))) ) #define ui64db_get(db,k) ( DB->data2ptr((db)->get((db),DB->ui642key(k))) ) // Get int-type data from DBMaps of various key types #define db_iget(db,k) ( DB->data2i((db)->get((db),(k))) ) #define idb_iget(db,k) ( DB->data2i((db)->get((db),DB->i2key(k))) ) #define uidb_iget(db,k) ( DB->data2i((db)->get((db),DB->ui2key(k))) ) #define strdb_iget(db,k) ( DB->data2i((db)->get((db),DB->str2key(k))) ) #define i64db_iget(db,k) ( DB->data2i((db)->get((db),DB->i642key(k))) ) #define ui64db_iget(db,k) ( DB->data2i((db)->get((db),DB->ui642key(k))) ) // Get uint-type data from DBMaps of various key types #define db_uiget(db,k) ( DB->data2ui((db)->get((db),(k))) ) #define idb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->i2key(k))) ) #define uidb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->ui2key(k))) ) #define strdb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->str2key(k))) ) #define i64db_uiget(db,k) ( DB->data2ui((db)->get((db),DB->i642key(k))) ) #define ui64db_uiget(db,k) ( DB->data2ui((db)->get((db),DB->ui642key(k))) ) // Put pointer-type data into DBMaps of various key types #define db_put(db,k,d) ( (db)->put((db),(k),DB->ptr2data(d),NULL) ) #define idb_put(db,k,d) ( (db)->put((db),DB->i2key(k),DB->ptr2data(d),NULL) ) #define uidb_put(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->ptr2data(d),NULL) ) #define strdb_put(db,k,d) ( (db)->put((db),DB->str2key(k),DB->ptr2data(d),NULL) ) #define i64db_put(db,k,d) ( (db)->put((db),DB->i642key(k),DB->ptr2data(d),NULL) ) #define ui64db_put(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->ptr2data(d),NULL) ) // Put int-type data into DBMaps of various key types #define db_iput(db,k,d) ( (db)->put((db),(k),DB->i2data(d),NULL) ) #define idb_iput(db,k,d) ( (db)->put((db),DB->i2key(k),DB->i2data(d),NULL) ) #define uidb_iput(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->i2data(d),NULL) ) #define strdb_iput(db,k,d) ( (db)->put((db),DB->str2key(k),DB->i2data(d),NULL) ) #define i64db_iput(db,k,d) ( (db)->put((db),DB->i642key(k),DB->i2data(d),NULL) ) #define ui64db_iput(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->i2data(d),NULL) ) // Put uint-type data into DBMaps of various key types #define db_uiput(db,k,d) ( (db)->put((db),(k),DB->ui2data(d),NULL) ) #define idb_uiput(db,k,d) ( (db)->put((db),DB->i2key(k),DB->ui2data(d),NULL) ) #define uidb_uiput(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->ui2data(d),NULL) ) #define strdb_uiput(db,k,d) ( (db)->put((db),DB->str2key(k),DB->ui2data(d),NULL) ) #define i64db_uiput(db,k,d) ( (db)->put((db),DB->i642key(k),DB->ui2data(d),NULL) ) #define ui64db_uiput(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->ui2data(d),NULL) ) // Remove entry from DBMaps of various key types #define db_remove(db,k) ( (db)->remove((db),(k),NULL) ) #define idb_remove(db,k) ( (db)->remove((db),DB->i2key(k),NULL) ) #define uidb_remove(db,k) ( (db)->remove((db),DB->ui2key(k),NULL) ) #define strdb_remove(db,k) ( (db)->remove((db),DB->str2key(k),NULL) ) #define i64db_remove(db,k) ( (db)->remove((db),DB->i642key(k),NULL) ) #define ui64db_remove(db,k) ( (db)->remove((db),DB->ui642key(k),NULL) ) //These are discarding the possible vargs you could send to the function, so those //that require vargs must not use these defines. #define db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),(k),(f))) ) #define idb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->i2key(k),(f))) ) #define uidb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->ui2key(k),(f))) ) #define strdb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->str2key(k),(f))) ) #define i64db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->i642key(k),(f))) ) #define ui64db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->ui642key(k),(f))) ) // Database creation and destruction macros #define idb_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_INT,(opt),sizeof(int)) #define uidb_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_UINT,(opt),sizeof(unsigned int)) #define strdb_alloc(opt,maxlen) DB->alloc(__FILE__,__func__,__LINE__,DB_STRING,(opt),(maxlen)) #define stridb_alloc(opt,maxlen) DB->alloc(__FILE__,__func__,__LINE__,DB_ISTRING,(opt),(maxlen)) #define i64db_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_INT64,(opt),sizeof(int64)) #define ui64db_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_UINT64,(opt),sizeof(uint64)) #define db_destroy(db) ( (db)->destroy((db),NULL) ) // Other macros #define db_clear(db) ( (db)->clear((db),NULL) ) #define db_size(db) ( (db)->size(db) ) #define db_iterator(db) ( (db)->iterator(db) ) #define dbi_first(dbi) ( DB->data2ptr((dbi)->first((dbi),NULL)) ) #define dbi_last(dbi) ( DB->data2ptr((dbi)->last((dbi),NULL)) ) #define dbi_next(dbi) ( DB->data2ptr((dbi)->next((dbi),NULL)) ) #define dbi_prev(dbi) ( DB->data2ptr((dbi)->prev((dbi),NULL)) ) #define dbi_remove(dbi) ( (dbi)->remove((dbi),NULL) ) #define dbi_exists(dbi) ( (dbi)->exists(dbi) ) #define dbi_destroy(dbi) ( (dbi)->destroy(dbi) ) /***************************************************************************** * (2) Section with public functions. * * db_fix_options - Fix the options for a type of database. * * db_default_cmp - Get the default comparator for a type of database. * * db_default_hash - Get the default hasher for a type of database. * * db_default_release - Get the default releaser for a type of database * * with the fixed options. * * db_custom_release - Get the releaser that behaves as specified. * * db_alloc - Allocate a new database. * * db_i2key - Manual cast from `int` to `union DBKey`. * * db_ui2key - Manual cast from `unsigned int` to `union DBKey`. * * db_str2key - Manual cast from `unsigned char *` to `union DBKey`.* * db_i642key - Manual cast from `int64` to `union DBKey`. * * db_ui642key - Manual cast from `uint64` to `union DBKey`. * * db_i2data - Manual cast from `int` to `struct DBData`. * * db_ui2data - Manual cast from `unsigned int` to `struct DBData`. * * db_ptr2data - Manual cast from `void*` to `struct DBData`. * * db_data2i - Gets `int` value from `struct DBData`. * * db_data2ui - Gets `unsigned int` value from `struct DBData`. * * db_data2ptr - Gets `void*` value from `struct DBData`. * * db_init - Initializes the database system. * * db_final - Finalizes the database system. * *****************************************************************************/ struct db_interface { /** * Returns the fixed options according to the database type. * Sets required options and unsets unsupported options. * For numeric databases DB_OPT_DUP_KEY and DB_OPT_RELEASE_KEY are unset. * @param type Type of the database * @param options Original options of the database * @return Fixed options of the database * @private * @see enum DBType * @see enum DBOptions * @see #db_default_release() */ enum DBOptions (*fix_options) (enum DBType type, enum DBOptions options); /** * Returns the default comparator for the type of database. * @param type Type of database * @return Comparator for the type of database or NULL if unknown database * @public * @see enum DBType * @see #DBComparator */ DBComparator (*default_cmp) (enum DBType type); /** * Returns the default hasher for the specified type of database. * @param type Type of database * @return Hasher of the type of database or NULL if unknown database * @public * @see enum DBType * @see #DBHasher */ DBHasher (*default_hash) (enum DBType type); /** * Returns the default releaser for the specified type of database with the * specified options. * * NOTE: the options are fixed by #db_fix_options() before choosing the * releaser. * * @param type Type of database * @param options Options of the database * @return Default releaser for the type of database with the fixed options * @public * @see enum DBType * @see enum DBOptions * @see #DBReleaser * @see #db_fix_options() * @see #db_custom_release() */ DBReleaser (*default_release) (enum DBType type, enum DBOptions options); /** * Returns the releaser that behaves as which specifies. * @param which Defines what the releaser releases * @return Releaser for the specified release options * @public * @see enum DBReleaseOption * @see #DBReleaser * @see #db_default_release() */ DBReleaser (*custom_release) (enum DBReleaseOption which); /** * Allocate a new database of the specified type. * * It uses the default comparator, hasher and releaser of the specified * database type and fixed options. * * NOTE: the options are fixed by #db_fix_options() before creating the * database. * * @param file File where the database is being allocated * @param line Line of the file where the database is being allocated * @param type Type of database * @param options Options of the database * @param maxlen Maximum length of the string to be used as key in string * databases. If 0, the maximum number of maxlen is used (64K). * @return The interface of the database * @public * @see enum DBType * @see struct DBMap * @see #db_default_cmp() * @see #db_default_hash() * @see #db_default_release() * @see #db_fix_options() */ struct DBMap *(*alloc) (const char *file, const char *func, int line, enum DBType type, enum DBOptions options, unsigned short maxlen); /** * Manual cast from 'int' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ union DBKey (*i2key) (int key); /** * Manual cast from 'unsigned int' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ union DBKey (*ui2key) (unsigned int key); /** * Manual cast from 'unsigned char *' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ union DBKey (*str2key) (const char *key); /** * Manual cast from 'int64' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ union DBKey (*i642key) (int64 key); /** * Manual cast from 'uint64' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ union DBKey (*ui642key) (uint64 key); /** * Manual cast from 'int' to the struct DBData. * @param data Data to be casted * @return The data as a DBData struct * @public */ struct DBData (*i2data) (int data); /** * Manual cast from 'unsigned int' to the struct DBData. * @param data Data to be casted * @return The data as a DBData struct * @public */ struct DBData (*ui2data) (unsigned int data); /** * Manual cast from 'void *' to the struct DBData. * @param data Data to be casted * @return The data as a DBData struct * @public */ struct DBData (*ptr2data) (void *data); /** * Gets int type data from struct DBData. * If data is not int type, returns 0. * @param data Data * @return Integer value of the data. * @public */ int (*data2i) (struct DBData *data); /** * Gets unsigned int type data from struct DBData. * If data is not unsigned int type, returns 0. * @param data Data * @return Unsigned int value of the data. * @public */ unsigned int (*data2ui) (struct DBData *data); /** * Gets void* type data from struct DBData. * If data is not void* type, returns NULL. * @param data Data * @return Void* value of the data. * @public */ void* (*data2ptr) (struct DBData *data); /** * Initialize the database system. * @public * @see #db_final(void) */ void (*init) (void); /** * Finalize the database system. * Frees the memory used by the block reusage system. * @public * @see #db_init(void) */ void (*final) (void); }; // Link DB System - From jAthena struct linkdb_node { struct linkdb_node *next; struct linkdb_node *prev; void *key; void *data; }; typedef void (*LinkDBFunc)(void* key, void* data, va_list args); #ifdef HERCULES_CORE void linkdb_insert (struct linkdb_node** head, void *key, void* data); // Doesn't take into account duplicate keys void linkdb_replace (struct linkdb_node** head, void *key, void* data); // Takes into account duplicate keys void* linkdb_search (struct linkdb_node** head, void *key); void* linkdb_erase (struct linkdb_node** head, void *key); void linkdb_final (struct linkdb_node** head); void linkdb_vforeach(struct linkdb_node** head, LinkDBFunc func, va_list ap); void linkdb_foreach (struct linkdb_node** head, LinkDBFunc func, ...); void db_defaults(void); #endif // HERCULES_CORE HPShared struct db_interface *DB; /** * Array Helper macros */ /** * Finds an entry in an array. * * @code * ARR_FIND(0, size, i, list[i] == target); * @endcode * * To differentiate between the found and not found cases, the caller code can * compare _end and _var after this macro returns. * * @param _start Starting index (ex: 0). * @param _end End index (ex: size of the array). * @param _var Index variable. * @param _cmp Search expression (should return true when the target entry is found). */ #define ARR_FIND(_start, _end, _var, _cmp) \ do { \ for ((_var) = (_start); (_var) < (_end); ++(_var)) \ if (_cmp) \ break; \ } while(false) /** * Moves an entry of the array. * * @code * ARR_MOVE(i, 0, list, int); // move index i to index 0 * @endcode * * @remark * Use ARR_MOVERIGHT/ARR_MOVELEFT if _from and _to are direct numbers. * * @param _from Initial index of the entry. * @param _to Target index of the entry. * @param _arr Array. * @param _type Type of entry. */ #define ARR_MOVE(_from, _to, _arr, _type) \ do { \ if ((_from) != (_to)) { \ _type _backup_; \ memmove(&_backup_, (_arr)+(_from), sizeof(_type)); \ if ((_from) < (_to)) \ memmove((_arr)+(_from), (_arr)+(_from)+1, ((_to)-(_from))*sizeof(_type)); \ else if ((_from) > (_to)) \ memmove((_arr)+(_to)+1, (_arr)+(_to), ((_from)-(_to))*sizeof(_type)); \ memmove((_arr)+(_to), &_backup_, sizeof(_type)); \ } \ } while(false) /** * Moves an entry of the array to the right. * * @code * ARR_MOVERIGHT(1, 4, list, int); // move index 1 to index 4 * @endcode * * @param _from Initial index of the entry. * @param _to Target index of the entry. * @param _arr Array. * @param _type Type of entry. */ #define ARR_MOVERIGHT(_from, _to, _arr, _type) \ do { \ _type _backup_; \ memmove(&_backup_, (_arr)+(_from), sizeof(_type)); \ memmove((_arr)+(_from), (_arr)+(_from)+1, ((_to)-(_from))*sizeof(_type)); \ memmove((_arr)+(_to), &_backup_, sizeof(_type)); \ } while(false) /** * Moves an entry of the array to the left. * * @code * ARR_MOVELEFT(3, 0, list, int); // move index 3 to index 0 * @endcode * * @param _from Initial index of the entry. * @param _end Target index of the entry. * @param _arr Array. * @param _type Type of entry. */ #define ARR_MOVELEFT(_from, _to, _arr, _type) \ do { \ _type _backup_; \ memmove(&_backup_, (_arr)+(_from), sizeof(_type)); \ memmove((_arr)+(_to)+1, (_arr)+(_to), ((_from)-(_to))*sizeof(_type)); \ memmove((_arr)+(_to), &_backup_, sizeof(_type)); \ } while(false) /** * Vector library based on defines (dynamic array). * * @remark * This library uses aMalloc, aRealloc, aFree. */ /** * Declares an anonymous vector struct. * * @param _type Type of data to be contained. */ #define VECTOR_DECL(_type) \ struct { \ int _max_; \ int _len_; \ _type *_data_; \ } /** * Declares a named vector struct. * * @param _name Structure name. * @param _type Type of data to be contained. */ #define VECTOR_STRUCT_DECL(_name, _type) \ struct _name { \ int _max_; \ int _len_; \ _type *_data_; \ } /** * Declares and initializes an anonymous vector variable. * * @param _type Type of data to be contained. * @param _var Variable name. */ #define VECTOR_VAR(_type, _var) \ VECTOR_DECL(_type) _var = {0, 0, NULL} /** * Declares and initializes a named vector variable. * * @param _name Structure name. * @param _var Variable name. */ #define VECTOR_STRUCT_VAR(_name, _var) \ struct _name _var = {0, 0, NULL} /** * Initializes a vector. * * @param _vec Vector. */ #define VECTOR_INIT(_vec) \ do { \ VECTOR_DATA(_vec) = NULL; \ VECTOR_CAPACITY(_vec) = 0; \ VECTOR_LENGTH(_vec) = 0; \ } while(false) /** * Returns the internal array of values. * * @param _vec Vector. * @return Internal array of values. */ #define VECTOR_DATA(_vec) \ ( (_vec)._data_ ) /** * Returns the length of the vector (number of elements in use). * * @param _vec Vector * @return Length */ #define VECTOR_LENGTH(_vec) \ ( (_vec)._len_ ) /** * Returns the capacity of the vector (number of elements allocated). * * @param _vec Vector. * @return Capacity. */ #define VECTOR_CAPACITY(_vec) \ ( (_vec)._max_ ) /** * Returns the value at the target index. * * Assumes the index exists. * * @param _vec Vector. * @param _idx Index. * @return Value. */ #define VECTOR_INDEX(_vec, _idx) \ ( VECTOR_DATA(_vec)[_idx] ) /** * Returns the first value of the vector. * * Assumes the array is not empty. * * @param _vec Vector. * @return First value. */ #define VECTOR_FIRST(_vec) \ ( VECTOR_INDEX(_vec, 0) ) /** * Returns the last value of the vector. * * Assumes the array is not empty. * * @param _vec Vector. * @return Last value. */ #define VECTOR_LAST(_vec) \ ( VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)-1) ) /** * Resizes the vector. * * Excess values are discarded, new positions are zeroed. * * @param _vec Vector. * @param _n New size. */ #define VECTOR_RESIZE(_vec, _n) \ do { \ if ((_n) > VECTOR_CAPACITY(_vec)) { \ /* increase size */ \ if (VECTOR_CAPACITY(_vec) == 0) \ VECTOR_DATA(_vec) = aMalloc((_n)*sizeof(VECTOR_FIRST(_vec))); /* allocate new */ \ else \ VECTOR_DATA(_vec) = aRealloc(VECTOR_DATA(_vec), (_n)*sizeof(VECTOR_FIRST(_vec))); /* reallocate */ \ memset(VECTOR_DATA(_vec)+VECTOR_LENGTH(_vec), 0, (VECTOR_CAPACITY(_vec)-VECTOR_LENGTH(_vec))*sizeof(VECTOR_FIRST(_vec))); /* clear new data */ \ VECTOR_CAPACITY(_vec) = (_n); /* update capacity */ \ } else if ((_n) == 0 && VECTOR_CAPACITY(_vec) > 0) { \ /* clear vector */ \ aFree(VECTOR_DATA(_vec)); VECTOR_DATA(_vec) = NULL; /* free data */ \ VECTOR_CAPACITY(_vec) = 0; /* clear capacity */ \ VECTOR_LENGTH(_vec) = 0; /* clear length */ \ } else if ((_n) < VECTOR_CAPACITY(_vec)) { \ /* reduce size */ \ VECTOR_DATA(_vec) = aRealloc(VECTOR_DATA(_vec), (_n)*sizeof(VECTOR_FIRST(_vec))); /* reallocate */ \ VECTOR_CAPACITY(_vec) = (_n); /* update capacity */ \ if ((_n) - VECTOR_LENGTH(_vec) > 0) \ VECTOR_LENGTH(_vec) = (_n); /* update length */ \ } \ } while(false) /** * Ensures that the array has the target number of empty positions. * * Increases the capacity in multiples of _step. * * @param _vec Vector. * @param _n Desired empty positions. * @param _step Increase. */ #define VECTOR_ENSURE(_vec, _n, _step) \ do { \ int _newcapacity_ = VECTOR_CAPACITY(_vec); \ while ((_n) + VECTOR_LENGTH(_vec) > _newcapacity_) \ _newcapacity_ += (_step); \ if (_newcapacity_ > VECTOR_CAPACITY(_vec)) \ VECTOR_RESIZE(_vec, _newcapacity_); \ } while(false) /** * Inserts a zeroed value in the target index. * * Assumes the index is valid and there is enough capacity. * * @param _vec Vector. * @param _idx Index. */ #define VECTOR_INSERTZEROED(_vec, _idx) \ do { \ if ((_idx) < VECTOR_LENGTH(_vec)) /* move data */ \ memmove(&VECTOR_INDEX(_vec, (_idx)+1), &VECTOR_INDEX(_vec, _idx), (VECTOR_LENGTH(_vec)-(_idx))*sizeof(VECTOR_FIRST(_vec))); \ memset(&VECTOR_INDEX(_vec, _idx), 0, sizeof(VECTOR_INDEX(_vec, _idx))); /* set zeroed value */ \ ++VECTOR_LENGTH(_vec); /* increase length */ \ } while(false) /** * Inserts a value in the target index (using the '=' operator). * * Assumes the index is valid and there is enough capacity. * * @param _vec Vector. * @param _idx Index. * @param _val Value. */ #define VECTOR_INSERT(_vec, _idx, _val) \ do { \ if ((_idx) < VECTOR_LENGTH(_vec)) /* move data */ \ memmove(&VECTOR_INDEX(_vec, (_idx)+1), &VECTOR_INDEX(_vec, _idx), (VECTOR_LENGTH(_vec)-(_idx))*sizeof(VECTOR_FIRST(_vec))); \ VECTOR_INDEX(_vec, _idx) = (_val); /* set value */ \ ++VECTOR_LENGTH(_vec); /* increase length */ \ } while(false) /** * Inserts a value in the target index (using memcpy). * * Assumes the index is valid and there is enough capacity. * * @param _vec Vector. * @param _idx Index. * @param _val Value. */ #define VECTOR_INSERTCOPY(_vec, _idx, _val) \ VECTOR_INSERTARRAY(_vec, _idx, &(_val), 1) /** * Inserts the values of the array in the target index (using memcpy). * * Assumes the index is valid and there is enough capacity. * * @param _vec Vector. * @param _idx Index. * @param _pval Array of values. * @param _n Number of values. */ #define VECTOR_INSERTARRAY(_vec, _idx, _pval, _n) \ do { \ if ((_idx) < VECTOR_LENGTH(_vec)) /* move data */ \ memmove(&VECTOR_INDEX(_vec, (_idx)+(_n)), &VECTOR_INDEX(_vec, _idx), (VECTOR_LENGTH(_vec)-(_idx))*sizeof(VECTOR_FIRST(_vec))); \ memcpy(&VECTOR_INDEX(_vec, _idx), (_pval), (_n)*sizeof(VECTOR_FIRST(_vec))); /* set values */ \ VECTOR_LENGTH(_vec) += (_n); /* increase length */ \ } while(false) /** * Inserts a zeroed value in the end of the vector. * * Assumes there is enough capacity. * * @param _vec Vector. */ #define VECTOR_PUSHZEROED(_vec) \ do { \ memset(&VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)), 0, sizeof(VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)))); /* set zeroed value */ \ ++VECTOR_LENGTH(_vec); /* increase length */ \ } while(false) /** * Appends a value at the end of the vector (using the '=' operator). * * Assumes there is enough capacity. * * @param _vec Vector. * @param _val Value. */ #define VECTOR_PUSH(_vec, _val) \ do { \ VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)) = (_val); /* set value */ \ ++VECTOR_LENGTH(_vec); /* increase length */ \ }while(false) /** * Appends a value at the end of the vector (using memcpy). * * Assumes there is enough capacity. * * @param _vec Vector. * @param _val Value. */ #define VECTOR_PUSHCOPY(_vec, _val) \ VECTOR_PUSHARRAY(_vec, &(_val), 1) /** * Appends the values of the array at the end of the vector (using memcpy). * * Assumes there is enough capacity. * * @param _vec Vector. * @param _pval Array of values. * @param _n Number of values. */ #define VECTOR_PUSHARRAY(_vec, _pval, _n) \ do { \ memcpy(&VECTOR_INDEX(_vec, VECTOR_LENGTH(_vec)), (_pval), (_n)*sizeof(VECTOR_FIRST(_vec))); /* set values */ \ VECTOR_LENGTH(_vec) += (_n); /* increase length */ \ } while(false) /** * Removes and returns the last value of the vector. * * Assumes the array is not empty. * * @param _vec Vector. * @return Removed value. */ #define VECTOR_POP(_vec) \ ( VECTOR_INDEX(_vec, --VECTOR_LENGTH(_vec)) ) /** * Removes the last N values of the vector and returns the value of the last pop. * * Assumes there are enough values. * * @param _vec Vector. * @param _n Number of pops. * @return Last removed value. */ #define VECTOR_POPN(_vec, _n) \ ( VECTOR_INDEX(_vec, (VECTOR_LENGTH(_vec) -= (_n))) ) /** * Removes the target index from the vector. * * Assumes the index is valid and there are enough values. * * @param _vec Vector. * @param _idx Index. */ #define VECTOR_ERASE(_vec, _idx) \ VECTOR_ERASEN(_vec, _idx, 1) /** * Removes N values from the target index of the vector. * * Assumes the index is valid and there are enough values. * * @param _vec Vector. * @param _idx Index. * @param _n Number of values to remove. */ #define VECTOR_ERASEN(_vec, _idx, _n) \ do { \ if ((_idx) < VECTOR_LENGTH(_vec)-(_n) ) /* move data */ \ memmove(&VECTOR_INDEX(_vec, _idx), &VECTOR_INDEX(_vec, (_idx)+(_n)), (VECTOR_LENGTH(_vec)-((_idx)+(_n)))*sizeof(VECTOR_FIRST(_vec))); \ VECTOR_LENGTH(_vec) -= (_n); /* decrease length */ \ } while(false) /** * Removes all values from the vector. * * Does not free the allocated data. */ #define VECTOR_TRUNCATE(_vec) \ do { \ VECTOR_LENGTH(_vec) = 0; \ } while (false) /** * Clears the vector, freeing allocated data. * * @param _vec Vector. */ #define VECTOR_CLEAR(_vec) \ do { \ if (VECTOR_CAPACITY(_vec) > 0) { \ aFree(VECTOR_DATA(_vec)); VECTOR_DATA(_vec) = NULL; /* clear allocated array */ \ VECTOR_CAPACITY(_vec) = 0; /* clear capacity */ \ VECTOR_LENGTH(_vec) = 0; /* clear length */ \ } \ } while(false) /** * Binary heap library based on defines. * * Uses the VECTOR defines above. * Uses aMalloc, aRealloc, aFree. * * @warning * BHEAP implementation details affect behaviour of A* pathfinding. */ /** * Declares an anonymous binary heap struct. * * @param _type Type of data. */ #define BHEAP_DECL(_type) \ VECTOR_DECL(_type) /** * Declares a named binary heap struct. * * @param _name Structure name. * @param _type Type of data. */ #define BHEAP_STRUCT_DECL(_name, _type) \ VECTOR_STRUCT_DECL(_name, _type) /** * Declares and initializes an anonymous binary heap variable. * * @param _type Type of data. * @param _var Variable name. */ #define BHEAP_VAR(_type, _var) \ VECTOR_VAR(_type, _var) /** * Declares and initializes a named binary heap variable. * * @param _name Structure name. * @param _var Variable name. */ #define BHEAP_STRUCT_VAR(_name, _var) \ VECTOR_STRUCT_VAR(_name, _var) /** * Initializes a heap. * * @param _heap Binary heap. */ #define BHEAP_INIT(_heap) \ VECTOR_INIT(_heap) /** * Returns the internal array of values. * * @param _heap Binary heap. * @return Internal array of values. */ #define BHEAP_DATA(_heap) \ VECTOR_DATA(_heap) /** * Returns the length of the heap. * * @param _heap Binary heap. * @return Length. */ #define BHEAP_LENGTH(_heap) \ VECTOR_LENGTH(_heap) /** * Returns the capacity of the heap. * * @param _heap Binary heap. * @return Capacity. */ #define BHEAP_CAPACITY(_heap) \ VECTOR_CAPACITY(_heap) /** * Ensures that the heap has the target number of empty positions. * * Increases the capacity in multiples of _step. * * @param _heap Binary heap. * @param _n Required empty positions. * @param _step Increase. */ #define BHEAP_ENSURE(_heap, _n, _step) \ VECTOR_ENSURE(_heap, _n, _step) /** * Returns the top value of the heap. * * Assumes the heap is not empty. * * @param _heap Binary heap. * @return Value at the top. */ #define BHEAP_PEEK(_heap) \ VECTOR_INDEX(_heap, 0) /** * Inserts a value in the heap (using the '=' operator). * * Assumes there is enough capacity. * * The comparator takes two values as arguments, returns: * - negative if the first value is on the top * - positive if the second value is on the top * - 0 if they are equal * * @param _heap Binary heap. * @param _val Value. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_PUSH(_heap, _val, _topcmp, _swp) \ do { \ int _i_ = VECTOR_LENGTH(_heap); \ VECTOR_PUSH(_heap, _val); /* insert at end */ \ while (_i_ > 0) { \ /* restore heap property in parents */ \ int _parent_ = (_i_-1)/2; \ if (_topcmp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)) < 0) \ break; /* done */ \ _swp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)); \ _i_ = _parent_; \ } \ } while(false) /** * Variant of BHEAP_PUSH used by A* implementation, matching client bheap. * * @see BHEAP_PUSH. * * @param _heap Binary heap. * @param _val Value. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_PUSH2(_heap, _val, _topcmp, _swp) \ do { \ int _i_ = VECTOR_LENGTH(_heap); \ VECTOR_PUSH(_heap, _val); /* insert at end */ \ BHEAP_SIFTDOWN(_heap, 0, _i_, _topcmp, _swp); \ } while(false) /** * Removes the top value of the heap (using the '=' operator). * * Assumes the heap is not empty. * * The comparator takes two values as arguments, returns: * - negative if the first value is on the top * - positive if the second value is on the top * - 0 if they are equal * * @param _heap Binary heap. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_POP(_heap, _topcmp, _swp) \ BHEAP_POPINDEX(_heap, 0, _topcmp, _swp) /** * Variant of BHEAP_POP used by A* implementation, matching client bheap. * * @see BHEAP_POP. * * @param _heap Binary heap. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_POP2(_heap, _topcmp, _swp) \ do { \ VECTOR_INDEX(_heap, 0) = VECTOR_POP(_heap); /* put last at index */ \ if (VECTOR_LENGTH(_heap) == 0) /* removed last, nothing to do */ \ break; \ BHEAP_SIFTUP(_heap, 0, _topcmp, _swp); \ } while(false) /** * Removes the target value of the heap (using the '=' operator). * * Assumes the index exists. * * The comparator takes two values as arguments, returns: * - negative if the first value is on the top * - positive if the second value is on the top * - 0 if they are equal * * @param _heap Binary heap. * @param _idx Index. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_POPINDEX(_heap, _idx, _topcmp, _swp) \ do { \ int _i_ = _idx; \ VECTOR_INDEX(_heap, _idx) = VECTOR_POP(_heap); /* put last at index */ \ if (_i_ >= VECTOR_LENGTH(_heap)) /* removed last, nothing to do */ \ break; \ while (_i_ > 0) { \ /* restore heap property in parents */ \ int _parent_ = (_i_-1)/2; \ if (_topcmp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)) < 0) \ break; /* done */ \ _swp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i_)); \ _i_ = _parent_; \ } \ while (_i_ < VECTOR_LENGTH(_heap)) { \ /* restore heap property in children */ \ int _lchild_ = _i_*2 + 1; \ int _rchild_ = _i_*2 + 2; \ if ((_lchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _lchild_)) <= 0) \ && (_rchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _rchild_)) <= 0)) { \ break; /* done */ \ } else if (_rchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _lchild_), VECTOR_INDEX(_heap, _rchild_)) <= 0) { \ /* left child */ \ _swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _lchild_)); \ _i_ = _lchild_; \ } else { \ /* right child */ \ _swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _rchild_)); \ _i_ = _rchild_; \ } \ } \ } while(false) /** * Follow path up towards (but not all the way to) the root, swapping nodes * until finding a place where the new item that was placed at _idx fits. * * Only goes as high as _startidx (usually 0). * * @param _heap Binary heap. * @param _startidx Index of an ancestor of _idx. * @param _idx Index of an inserted element. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_SIFTDOWN(_heap, _startidx, _idx, _topcmp, _swp) \ do { \ int _i2_ = _idx; \ while (_i2_ > _startidx) { \ /* restore heap property in parents */ \ int _parent_ = (_i2_-1)/2; \ if (_topcmp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i2_)) <= 0) \ break; /* done */ \ _swp(VECTOR_INDEX(_heap, _parent_), VECTOR_INDEX(_heap, _i2_)); \ _i2_ = _parent_; \ } \ } while(false) /** * Repeatedly swap the smaller child with parent, after placing a new item at _idx. * * @param _heap Binary heap. * @param _idx Index of an inserted element. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_SIFTUP(_heap, _idx, _topcmp, _swp) \ do { \ int _i_ = _idx; \ int _lchild_ = _i_*2 + 1; \ while (_lchild_ < VECTOR_LENGTH(_heap)) { \ /* restore heap property in children */ \ int _rchild_ = _i_*2 + 2; \ if (_rchild_ >= VECTOR_LENGTH(_heap) || _topcmp(VECTOR_INDEX(_heap, _lchild_), VECTOR_INDEX(_heap, _rchild_)) < 0) { \ /* left child */ \ _swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _lchild_)); \ _i_ = _lchild_; \ } else { \ /* right child */ \ _swp(VECTOR_INDEX(_heap, _i_), VECTOR_INDEX(_heap, _rchild_)); \ _i_ = _rchild_; \ } \ _lchild_ = _i_*2 + 1; \ } \ BHEAP_SIFTDOWN(_heap, _idx, _i_, _topcmp, _swp); \ } while(false) /** * Restores a heap (after modifying the item at _idx). * * @param _heap Binary heap. * @param _idx Index. * @param _topcmp Comparator. * @param _swp Swapper. */ #define BHEAP_UPDATE(_heap, _idx, _topcmp, _swp) \ do { \ BHEAP_SIFTDOWN(_heap, 0, _idx, _topcmp, _swp); \ BHEAP_SIFTUP(_heap, _idx, _topcmp, _swp); \ } while(false) /** * Clears the binary heap, freeing allocated data. * * @param _heap Binary heap. */ #define BHEAP_CLEAR(_heap) \ VECTOR_CLEAR(_heap) /** * Generic comparator for a min-heap (minimum value at top). * * Returns -1 if v1 is smaller, 1 if v2 is smaller, 0 if equal. * * @warning * Arguments may be evaluted more than once. * * @param v1 First value. * @param v2 Second value. * @return negative if v1 is top, positive if v2 is top, 0 if equal. */ #define BHEAP_MINTOPCMP(v1, v2) \ ( (v1) == (v2) ? 0 : (v1) < (v2) ? -1 : 1 ) /** * Generic comparator for a max-heap (maximum value at top). * * Returns -1 if v1 is bigger, 1 if v2 is bigger, 0 if equal. * * @warning * Arguments may be evaluted more than once. * * @param v1 First value. * @param v2 Second value. * @return negative if v1 is top, positive if v2 is top, 0 if equal. */ #define BHEAP_MAXTOPCMP(v1, v2) \ ( (v1) == (v2) ? 0 : (v1) > (v2) ? -1 : 1 ) #endif /* COMMON_DB_H */