/*****************************************************************************\ * Copyright (c) Athena Dev Teams - Licensed under GNU GPL * * For more information, see LICENCE in the main folder * * * * This file is separated in two sections: * * (1) public typedefs, enums, unions, structures and defines * * (2) public functions * * * * <B>Notes on the release system:</B> * * Whenever an entry is removed from the database both the key and the * * data are requested to be released. * * At least one entry is removed when replacing an entry, removing an * * entry, clearing the database or destroying the database. * * What is actually released is defined by the release function, the * * functions of the database only ask for the key and/or data to be * * released. * * * * TODO: * * - create a custom database allocator * * - see what functions need or should be added to the database interface * * * * HISTORY: * * 2013/08/25 - Added int64/uint64 support for keys * * 2012/03/09 - Added enum for data types (int, uint, void*) * * 2007/11/09 - Added an iterator to the database. * * 2.1 (Athena build #???#) - Portability fix * * - Fixed the portability of casting to union and added the functions * * {@link DBMap#ensure(DBMap,DBKey,DBCreateData,...)} and * * {@link DBMap#clear(DBMap,DBApply,...)}. * * 2.0 (Athena build 4859) - Transition version * * - Almost everything recoded with a strategy similar to objects, * * database structure is maintained. * * 1.0 (up to Athena build 4706) * * - Previous database system. * * * * @version 2.1 (Athena build #???#) - Portability fix * * @author (Athena build 4859) Flavio @ Amazon Project * * @author (up to Athena build 4706) Athena Dev Teams * * @encoding US-ASCII * * @see common#db.c * \*****************************************************************************/ #ifndef COMMON_DB_H #define COMMON_DB_H #include <stdarg.h> #include "../common/cbasetypes.h" /*****************************************************************************\ * (1) Section with public typedefs, enums, unions, structures and defines. * * DBRelease - Enumeration of release options. * * DBType - Enumeration of database types. * * DBOptions - Bitfield enumeration of database options. * * DBKey - Union of used key types. * * DBDataType - Enumeration of data types. * * DBData - Struct for used data types. * * DBApply - Format of functions applied to the databases. * * DBMatcher - Format of matchers used in DBMap::getall. * * DBComparator - Format of the comparators used by the databases. * * DBHasher - Format of the hashers used by the databases. * * DBReleaser - Format of the releasers used by the databases. * * DBIterator - Database iterator. * * DBMap - Database interface. * \*****************************************************************************/ /** * Bitfield with what should be released by the releaser function (if the * function supports it). * @public * @see #DBReleaser * @see #db_custom_release(DBRelease) */ typedef enum DBRelease { DB_RELEASE_NOTHING = 0, DB_RELEASE_KEY = 1, DB_RELEASE_DATA = 2, DB_RELEASE_BOTH = 3 } DBRelease; /** * Supported types of database. * See {@link #db_fix_options(DBType,DBOptions)} for restrictions of the * types of databases. * @param DB_INT Uses int's for keys * @param DB_UINT Uses unsigned int's for keys * @param DB_STRING Uses strings for keys. * @param DB_ISTRING Uses case insensitive strings for keys. * @param DB_INT64 Uses int64's for keys * @param DB_UINT64 Uses uint64's for keys * @public * @see #DBOptions * @see #DBKey * @see #db_fix_options(DBType,DBOptions) * @see #db_default_cmp(DBType) * @see #db_default_hash(DBType) * @see #db_default_release(DBType,DBOptions) * @see #db_alloc(const char *,int,DBType,DBOptions,unsigned short) */ typedef enum DBType { DB_INT, DB_UINT, DB_STRING, DB_ISTRING, DB_INT64, DB_UINT64, } DBType; /** * Bitfield of options that define the behavior of the database. * See {@link #db_fix_options(DBType,DBOptions)} for restrictions of the * types of databases. * @param DB_OPT_BASE Base options: does not duplicate keys, releases nothing * and does not allow NULL keys or NULL data. * @param DB_OPT_DUP_KEY Duplicates the keys internally. If DB_OPT_RELEASE_KEY * is defined, the real key is freed as soon as the entry is added. * @param DB_OPT_RELEASE_KEY Releases the key. * @param DB_OPT_RELEASE_DATA Releases the data whenever an entry is removed * from the database. * WARNING: for functions that return the data (like DBMap::remove), * a dangling pointer will be returned. * @param DB_OPT_RELEASE_BOTH Releases both key and data. * @param DB_OPT_ALLOW_NULL_KEY Allow NULL keys in the database. * @param DB_OPT_ALLOW_NULL_DATA Allow NULL data in the database. * @public * @see #db_fix_options(DBType,DBOptions) * @see #db_default_release(DBType,DBOptions) * @see #db_alloc(const char *,int,DBType,DBOptions,unsigned short) */ typedef enum DBOptions { DB_OPT_BASE = 0, DB_OPT_DUP_KEY = 1, DB_OPT_RELEASE_KEY = 2, DB_OPT_RELEASE_DATA = 4, DB_OPT_RELEASE_BOTH = 6, DB_OPT_ALLOW_NULL_KEY = 8, DB_OPT_ALLOW_NULL_DATA = 16, } DBOptions; /** * Union of key types used by the database. * @param i Type of key for DB_INT databases * @param ui Type of key for DB_UINT databases * @param str Type of key for DB_STRING and DB_ISTRING databases * @public * @see #DBType * @see DBMap#get * @see DBMap#put * @see DBMap#remove */ typedef union DBKey { int i; unsigned int ui; const char *str; int64 i64; uint64 ui64; } DBKey; /** * Supported types of database data. * @param DB_DATA_INT Uses ints for data. * @param DB_DATA_UINT Uses unsigned ints for data. * @param DB_DATA_PTR Uses void pointers for data. * @public * @see #DBData */ typedef enum DBDataType { DB_DATA_INT, DB_DATA_UINT, DB_DATA_PTR, } DBDataType; /** * Struct for data types used by the database. * @param type Type of data * @param u Union of available data types * @param u.i Data of int type * @param u.ui Data of unsigned int type * @param u.ptr Data of void* type * @public */ typedef struct DBData { DBDataType type; union { int i; unsigned int ui; void *ptr; } u; } DBData; /** * Format of functions that create the data for the key when the entry doesn't * exist in the database yet. * @param key Key of the database entry * @param args Extra arguments of the function * @return Data identified by the key to be put in the database * @public * @see DBMap#vensure * @see DBMap#ensure */ typedef DBData (*DBCreateData)(DBKey key, va_list args); /** * Format of functions to be applied to an unspecified quantity of entries of * a database. * Any function that applies this function to the database will return the sum * of values returned by this function. * @param key Key of the database entry * @param data Data of the database entry * @param args Extra arguments of the function * @return Value to be added up by the function that is applying this * @public * @see DBMap#vforeach * @see DBMap#foreach * @see DBMap#vdestroy * @see DBMap#destroy */ typedef int (*DBApply)(DBKey key, DBData *data, va_list args); /** * Format of functions that match database entries. * The purpose of the match depends on the function that is calling the matcher. * Returns 0 if it is a match, another number otherwise. * @param key Key of the database entry * @param data Data of the database entry * @param args Extra arguments of the function * @return 0 if a match, another number otherwise * @public * @see DBMap#getall */ typedef int (*DBMatcher)(DBKey key, DBData data, va_list args); /** * Format of the comparators used internally by the database system. * Compares key1 to key2. * Returns 0 is equal, negative if lower and positive is higher. * @param key1 Key being compared * @param key2 Key we are comparing to * @param maxlen Maximum number of characters used in DB_STRING and DB_ISTRING * databases. * @return 0 if equal, negative if lower and positive if higher * @public * @see #db_default_cmp(DBType) */ typedef int (*DBComparator)(DBKey key1, DBKey key2, unsigned short maxlen); /** * Format of the hashers used internally by the database system. * Creates the hash of the key. * @param key Key being hashed * @param maxlen Maximum number of characters used in DB_STRING and DB_ISTRING * databases. * @return Hash of the key * @public * @see #db_default_hash(DBType) */ typedef uint64 (*DBHasher)(DBKey key, unsigned short maxlen); /** * Format of the releaser used by the database system. * Releases nothing, the key, the data or both. * All standard releasers use aFree to release. * @param key Key of the database entry * @param data Data of the database entry * @param which What is being requested to be released * @public * @see #DBRelease * @see #db_default_releaser(DBType,DBOptions) * @see #db_custom_release(DBRelease) */ typedef void (*DBReleaser)(DBKey key, DBData data, DBRelease which); typedef struct DBIterator DBIterator; typedef struct DBMap DBMap; /** * Database iterator. * Supports forward iteration, backward iteration and removing entries from the database. * The iterator is initially positioned before the first entry of the database. * While the iterator exists the database is locked internally, so invoke * {@link DBIterator#destroy} as soon as possible. * @public * @see #DBMap */ struct DBIterator { /** * Fetches the first entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ DBData* (*first)(DBIterator* self, DBKey* out_key); /** * Fetches the last entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ DBData* (*last)(DBIterator* self, DBKey* out_key); /** * Fetches the next entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ DBData* (*next)(DBIterator* self, DBKey* out_key); /** * Fetches the previous entry in the database. * Returns the data of the entry. * Puts the key in out_key, if out_key is not NULL. * @param self Iterator * @param out_key Key of the entry * @return Data of the entry * @protected */ DBData* (*prev)(DBIterator* self, DBKey* out_key); /** * Returns true if the fetched entry exists. * The databases entries might have NULL data, so use this to to test if * the iterator is done. * @param self Iterator * @return true is the entry exists * @protected */ bool (*exists)(DBIterator* self); /** * Removes the current entry from the database. * NOTE: {@link DBIterator#exists} will return false until another entry * is fetched * Puts data of the removed entry in out_data, if out_data is not NULL. * @param self Iterator * @param out_data Data of the removed entry. * @return 1 if entry was removed, 0 otherwise * @protected * @see DBMap#remove */ int (*remove)(DBIterator* self, DBData *out_data); /** * Destroys this iterator and unlocks the database. * @param self Iterator * @protected */ void (*destroy)(DBIterator* self); }; /** * Public interface of a database. Only contains functions. * All the functions take the interface as the first argument. * @public * @see #db_alloc(const char*,int,DBType,DBOptions,unsigned short) */ struct DBMap { /** * Returns a new iterator for this database. * The iterator keeps the database locked until it is destroyed. * The database will keep functioning normally but will only free internal * memory when unlocked, so destroy the iterator as soon as possible. * @param self Database * @return New iterator * @protected */ DBIterator* (*iterator)(DBMap* self); /** * Returns true if the entry exists. * @param self Database * @param key Key that identifies the entry * @return true is the entry exists * @protected */ bool (*exists)(DBMap* self, DBKey key); /** * Get the data of the entry identified by the key. * @param self Database * @param key Key that identifies the entry * @return Data of the entry or NULL if not found * @protected */ DBData* (*get)(DBMap* self, DBKey key); /** * Just calls {@link DBMap#vgetall}. * Get the data of the entries matched by <code>match</code>. * It puts a maximum of <code>max</code> entries into <code>buf</code>. * If <code>buf</code> is NULL, it only counts the matches. * Returns the number of entries that matched. * NOTE: if the value returned is greater than <code>max</code>, only the * first <code>max</code> entries found are put into the buffer. * @param self Database * @param buf Buffer to put the data of the matched entries * @param max Maximum number of data entries to be put into buf * @param match Function that matches the database entries * @param ... Extra arguments for match * @return The number of entries that matched * @protected * @see DBMap#vgetall(DBMap*,void **,unsigned int,DBMatcher,va_list) */ unsigned int (*getall)(DBMap* self, DBData** buf, unsigned int max, DBMatcher match, ...); /** * Get the data of the entries matched by <code>match</code>. * It puts a maximum of <code>max</code> entries into <code>buf</code>. * If <code>buf</code> is NULL, it only counts the matches. * Returns the number of entries that matched. * NOTE: if the value returned is greater than <code>max</code>, only the * first <code>max</code> entries found are put into the buffer. * @param self Database * @param buf Buffer to put the data of the matched entries * @param max Maximum number of data entries to be put into buf * @param match Function that matches the database entries * @param ... Extra arguments for match * @return The number of entries that matched * @protected * @see DBMap#getall(DBMap*,void **,unsigned int,DBMatcher,...) */ unsigned int (*vgetall)(DBMap* self, DBData** buf, unsigned int max, DBMatcher match, va_list args); /** * Just calls {@link DBMap#vensure}. * Get the data of the entry identified by the key. * If the entry does not exist, an entry is added with the data returned by * <code>create</code>. * @param self Database * @param key Key that identifies the entry * @param create Function used to create the data if the entry doesn't exist * @param ... Extra arguments for create * @return Data of the entry * @protected * @see DBMap#vensure(DBMap*,DBKey,DBCreateData,va_list) */ DBData* (*ensure)(DBMap* self, DBKey key, DBCreateData create, ...); /** * Get the data of the entry identified by the key. * If the entry does not exist, an entry is added with the data returned by * <code>create</code>. * @param self Database * @param key Key that identifies the entry * @param create Function used to create the data if the entry doesn't exist * @param args Extra arguments for create * @return Data of the entry * @protected * @see DBMap#ensure(DBMap*,DBKey,DBCreateData,...) */ DBData* (*vensure)(DBMap* self, DBKey key, DBCreateData create, va_list args); /** * Put the data identified by the key in the database. * Puts the previous data in out_data, if out_data is not NULL. * NOTE: Uses the new key, the old one is released. * @param self Database * @param key Key that identifies the data * @param data Data to be put in the database * @param out_data Previous data if the entry exists * @return 1 if if the entry already exists, 0 otherwise * @protected */ int (*put)(DBMap* self, DBKey key, DBData data, DBData *out_data); /** * Remove an entry from the database. * Puts the previous data in out_data, if out_data is not NULL. * NOTE: The key (of the database) is released. * @param self Database * @param key Key that identifies the entry * @param out_data Previous data if the entry exists * @return 1 if if the entry already exists, 0 otherwise * @protected */ int (*remove)(DBMap* self, DBKey key, DBData *out_data); /** * Just calls {@link DBMap#vforeach}. * Apply <code>func</code> to every entry in the database. * Returns the sum of values returned by func. * @param self Database * @param func Function to be applied * @param ... Extra arguments for func * @return Sum of the values returned by func * @protected * @see DBMap#vforeach(DBMap*,DBApply,va_list) */ int (*foreach)(DBMap* self, DBApply func, ...); /** * Apply <code>func</code> to every entry in the database. * Returns the sum of values returned by func. * @param self Database * @param func Function to be applied * @param args Extra arguments for func * @return Sum of the values returned by func * @protected * @see DBMap#foreach(DBMap*,DBApply,...) */ int (*vforeach)(DBMap* self, DBApply func, va_list args); /** * Just calls {@link DBMap#vclear}. * Removes all entries from the database. * Before deleting an entry, func is applied to it. * Releases the key and the data. * Returns the sum of values returned by func, if it exists. * @param self Database * @param func Function to be applied to every entry before deleting * @param ... Extra arguments for func * @return Sum of values returned by func * @protected * @see DBMap#vclear(DBMap*,DBApply,va_list) */ int (*clear)(DBMap* self, DBApply func, ...); /** * Removes all entries from the database. * Before deleting an entry, func is applied to it. * Releases the key and the data. * Returns the sum of values returned by func, if it exists. * @param self Database * @param func Function to be applied to every entry before deleting * @param args Extra arguments for func * @return Sum of values returned by func * @protected * @see DBMap#clear(DBMap*,DBApply,...) */ int (*vclear)(DBMap* self, DBApply func, va_list args); /** * Just calls {@link DBMap#vdestroy}. * Finalize the database, feeing all the memory it uses. * Before deleting an entry, func is applied to it. * Releases the key and the data. * Returns the sum of values returned by func, if it exists. * NOTE: This locks the database globally. Any attempt to insert or remove * a database entry will give an error and be aborted (except for clearing). * @param self Database * @param func Function to be applied to every entry before deleting * @param ... Extra arguments for func * @return Sum of values returned by func * @protected * @see DBMap#vdestroy(DBMap*,DBApply,va_list) */ int (*destroy)(DBMap* self, DBApply func, ...); /** * Finalize the database, feeing all the memory it uses. * Before deleting an entry, func is applied to it. * Returns the sum of values returned by func, if it exists. * NOTE: This locks the database globally. Any attempt to insert or remove * a database entry will give an error and be aborted (except for clearing). * @param self Database * @param func Function to be applied to every entry before deleting * @param args Extra arguments for func * @return Sum of values returned by func * @protected * @see DBMap#destroy(DBMap*,DBApply,...) */ int (*vdestroy)(DBMap* self, DBApply func, va_list args); /** * Return the size of the database (number of items in the database). * @param self Database * @return Size of the database * @protected */ unsigned int (*size)(DBMap* self); /** * Return the type of the database. * @param self Database * @return Type of the database * @protected */ DBType (*type)(DBMap* self); /** * Return the options of the database. * @param self Database * @return Options of the database * @protected */ DBOptions (*options)(DBMap* self); }; // For easy access to the common functions. #define db_exists(db,k) ( (db)->exists((db),(k)) ) #define idb_exists(db,k) ( (db)->exists((db),DB->i2key(k)) ) #define uidb_exists(db,k) ( (db)->exists((db),DB->ui2key(k)) ) #define strdb_exists(db,k) ( (db)->exists((db),DB->str2key(k)) ) #define i64db_exists(db,k) ( (db)->exists((db),DB->i642key(k)) ) #define ui64db_exists(db,k) ( (db)->exists((db),DB->ui642key(k)) ) // Get pointer-type data from DBMaps of various key types #define db_get(db,k) ( DB->data2ptr((db)->get((db),(k))) ) #define idb_get(db,k) ( DB->data2ptr((db)->get((db),DB->i2key(k))) ) #define uidb_get(db,k) ( DB->data2ptr((db)->get((db),DB->ui2key(k))) ) #define strdb_get(db,k) ( DB->data2ptr((db)->get((db),DB->str2key(k))) ) #define i64db_get(db,k) ( DB->data2ptr((db)->get((db),DB->i642key(k))) ) #define ui64db_get(db,k) ( DB->data2ptr((db)->get((db),DB->ui642key(k))) ) // Get int-type data from DBMaps of various key types #define db_iget(db,k) ( DB->data2i((db)->get((db),(k))) ) #define idb_iget(db,k) ( DB->data2i((db)->get((db),DB->i2key(k))) ) #define uidb_iget(db,k) ( DB->data2i((db)->get((db),DB->ui2key(k))) ) #define strdb_iget(db,k) ( DB->data2i((db)->get((db),DB->str2key(k))) ) #define i64db_iget(db,k) ( DB->data2i((db)->get((db),DB->i642key(k))) ) #define ui64db_iget(db,k) ( DB->data2i((db)->get((db),DB->ui642key(k))) ) // Get uint-type data from DBMaps of various key types #define db_uiget(db,k) ( DB->data2ui((db)->get((db),(k))) ) #define idb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->i2key(k))) ) #define uidb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->ui2key(k))) ) #define strdb_uiget(db,k) ( DB->data2ui((db)->get((db),DB->str2key(k))) ) #define i64db_uiget(db,k) ( DB->data2ui((db)->get((db),DB->i642key(k))) ) #define ui64db_uiget(db,k) ( DB->data2ui((db)->get((db),DB->ui642key(k))) ) // Put pointer-type data into DBMaps of various key types #define db_put(db,k,d) ( (db)->put((db),(k),DB->ptr2data(d),NULL) ) #define idb_put(db,k,d) ( (db)->put((db),DB->i2key(k),DB->ptr2data(d),NULL) ) #define uidb_put(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->ptr2data(d),NULL) ) #define strdb_put(db,k,d) ( (db)->put((db),DB->str2key(k),DB->ptr2data(d),NULL) ) #define i64db_put(db,k,d) ( (db)->put((db),DB->i642key(k),DB->ptr2data(d),NULL) ) #define ui64db_put(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->ptr2data(d),NULL) ) // Put int-type data into DBMaps of various key types #define db_iput(db,k,d) ( (db)->put((db),(k),DB->i2data(d),NULL) ) #define idb_iput(db,k,d) ( (db)->put((db),DB->i2key(k),DB->i2data(d),NULL) ) #define uidb_iput(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->i2data(d),NULL) ) #define strdb_iput(db,k,d) ( (db)->put((db),DB->str2key(k),DB->i2data(d),NULL) ) #define i64db_iput(db,k,d) ( (db)->put((db),DB->i642key(k),DB->i2data(d),NULL) ) #define ui64db_iput(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->i2data(d),NULL) ) // Put uint-type data into DBMaps of various key types #define db_uiput(db,k,d) ( (db)->put((db),(k),DB->ui2data(d),NULL) ) #define idb_uiput(db,k,d) ( (db)->put((db),DB->i2key(k),DB->ui2data(d),NULL) ) #define uidb_uiput(db,k,d) ( (db)->put((db),DB->ui2key(k),DB->ui2data(d),NULL) ) #define strdb_uiput(db,k,d) ( (db)->put((db),DB->str2key(k),DB->ui2data(d),NULL) ) #define i64db_uiput(db,k,d) ( (db)->put((db),DB->i642key(k),DB->ui2data(d),NULL) ) #define ui64db_uiput(db,k,d) ( (db)->put((db),DB->ui642key(k),DB->ui2data(d),NULL) ) // Remove entry from DBMaps of various key types #define db_remove(db,k) ( (db)->remove((db),(k),NULL) ) #define idb_remove(db,k) ( (db)->remove((db),DB->i2key(k),NULL) ) #define uidb_remove(db,k) ( (db)->remove((db),DB->ui2key(k),NULL) ) #define strdb_remove(db,k) ( (db)->remove((db),DB->str2key(k),NULL) ) #define i64db_remove(db,k) ( (db)->remove((db),DB->i642key(k),NULL) ) #define ui64db_remove(db,k) ( (db)->remove((db),DB->ui642key(k),NULL) ) //These are discarding the possible vargs you could send to the function, so those //that require vargs must not use these defines. #define db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),(k),(f))) ) #define idb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->i2key(k),(f))) ) #define uidb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->ui2key(k),(f))) ) #define strdb_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->str2key(k),(f))) ) #define i64db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->i642key(k),(f))) ) #define ui64db_ensure(db,k,f) ( DB->data2ptr((db)->ensure((db),DB->ui642key(k),(f))) ) // Database creation and destruction macros #define idb_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_INT,(opt),sizeof(int)) #define uidb_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_UINT,(opt),sizeof(unsigned int)) #define strdb_alloc(opt,maxlen) DB->alloc(__FILE__,__func__,__LINE__,DB_STRING,(opt),(maxlen)) #define stridb_alloc(opt,maxlen) DB->alloc(__FILE__,__func__,__LINE__,DB_ISTRING,(opt),(maxlen)) #define i64db_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_INT64,(opt),sizeof(int64)) #define ui64db_alloc(opt) DB->alloc(__FILE__,__func__,__LINE__,DB_UINT64,(opt),sizeof(uint64)) #define db_destroy(db) ( (db)->destroy((db),NULL) ) // Other macros #define db_clear(db) ( (db)->clear((db),NULL) ) #define db_size(db) ( (db)->size(db) ) #define db_iterator(db) ( (db)->iterator(db) ) #define dbi_first(dbi) ( DB->data2ptr((dbi)->first((dbi),NULL)) ) #define dbi_last(dbi) ( DB->data2ptr((dbi)->last((dbi),NULL)) ) #define dbi_next(dbi) ( DB->data2ptr((dbi)->next((dbi),NULL)) ) #define dbi_prev(dbi) ( DB->data2ptr((dbi)->prev((dbi),NULL)) ) #define dbi_remove(dbi) ( (dbi)->remove((dbi),NULL) ) #define dbi_exists(dbi) ( (dbi)->exists(dbi) ) #define dbi_destroy(dbi) ( (dbi)->destroy(dbi) ) /*****************************************************************************\ * (2) Section with public functions. * * db_fix_options - Fix the options for a type of database. * * db_default_cmp - Get the default comparator for a type of database. * * db_default_hash - Get the default hasher for a type of database. * * db_default_release - Get the default releaser for a type of database * * with the fixed options. * * db_custom_release - Get the releaser that behaves as specified. * * db_alloc - Allocate a new database. * * db_i2key - Manual cast from 'int' to 'DBKey'. * * db_ui2key - Manual cast from 'unsigned int' to 'DBKey'. * * db_str2key - Manual cast from 'unsigned char *' to 'DBKey'. * * db_i642key - Manual cast from 'int64' to 'DBKey'. * * db_ui642key - Manual cast from 'uint64' to 'DBKey'. * * db_i2data - Manual cast from 'int' to 'DBData'. * * db_ui2data - Manual cast from 'unsigned int' to 'DBData'. * * db_ptr2data - Manual cast from 'void*' to 'DBData'. * * db_data2i - Gets 'int' value from 'DBData'. * * db_data2ui - Gets 'unsigned int' value from 'DBData'. * * db_data2ptr - Gets 'void*' value from 'DBData'. * * db_init - Initializes the database system. * * db_final - Finalizes the database system. * \*****************************************************************************/ struct db_interface { /** * Returns the fixed options according to the database type. * Sets required options and unsets unsupported options. * For numeric databases DB_OPT_DUP_KEY and DB_OPT_RELEASE_KEY are unset. * @param type Type of the database * @param options Original options of the database * @return Fixed options of the database * @private * @see #DBType * @see #DBOptions * @see #db_default_release(DBType,DBOptions) */ DBOptions (*fix_options) (DBType type, DBOptions options); /** * Returns the default comparator for the type of database. * @param type Type of database * @return Comparator for the type of database or NULL if unknown database * @public * @see #DBType * @see #DBComparator */ DBComparator (*default_cmp) (DBType type); /** * Returns the default hasher for the specified type of database. * @param type Type of database * @return Hasher of the type of database or NULL if unknown database * @public * @see #DBType * @see #DBHasher */ DBHasher (*default_hash) (DBType type); /** * Returns the default releaser for the specified type of database with the * specified options. * NOTE: the options are fixed by {@link #db_fix_options(DBType,DBOptions)} * before choosing the releaser * @param type Type of database * @param options Options of the database * @return Default releaser for the type of database with the fixed options * @public * @see #DBType * @see #DBOptions * @see #DBReleaser * @see #db_fix_options(DBType,DBOptions) * @see #db_custom_release(DBRelease) */ DBReleaser (*default_release) (DBType type, DBOptions options); /** * Returns the releaser that behaves as <code>which</code> specifies. * @param which Defines what the releaser releases * @return Releaser for the specified release options * @public * @see #DBRelease * @see #DBReleaser * @see #db_default_release(DBType,DBOptions) */ DBReleaser (*custom_release) (DBRelease which); /** * Allocate a new database of the specified type. * It uses the default comparator, hasher and releaser of the specified * database type and fixed options. * NOTE: the options are fixed by {@link #db_fix_options(DBType,DBOptions)} * before creating the database. * @param file File where the database is being allocated * @param line Line of the file where the database is being allocated * @param type Type of database * @param options Options of the database * @param maxlen Maximum length of the string to be used as key in string * databases. If 0, the maximum number of maxlen is used (64K). * @return The interface of the database * @public * @see #DBType * @see #DBMap * @see #db_default_cmp(DBType) * @see #db_default_hash(DBType) * @see #db_default_release(DBType,DBOptions) * @see #db_fix_options(DBType,DBOptions) */ DBMap* (*alloc) (const char *file, const char *func, int line, DBType type, DBOptions options, unsigned short maxlen); /** * Manual cast from 'int' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ DBKey (*i2key) (int key); /** * Manual cast from 'unsigned int' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ DBKey (*ui2key) (unsigned int key); /** * Manual cast from 'unsigned char *' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ DBKey (*str2key) (const char *key); /** * Manual cast from 'int64' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ DBKey (*i642key) (int64 key); /** * Manual cast from 'uint64' to the union DBKey. * @param key Key to be casted * @return The key as a DBKey union * @public */ DBKey (*ui642key) (uint64 key); /** * Manual cast from 'int' to the struct DBData. * @param data Data to be casted * @return The data as a DBData struct * @public */ DBData (*i2data) (int data); /** * Manual cast from 'unsigned int' to the struct DBData. * @param data Data to be casted * @return The data as a DBData struct * @public */ DBData (*ui2data) (unsigned int data); /** * Manual cast from 'void *' to the struct DBData. * @param data Data to be casted * @return The data as a DBData struct * @public */ DBData (*ptr2data) (void *data); /** * Gets int type data from struct DBData. * If data is not int type, returns 0. * @param data Data * @return Integer value of the data. * @public */ int (*data2i) (DBData *data); /** * Gets unsigned int type data from struct DBData. * If data is not unsigned int type, returns 0. * @param data Data * @return Unsigned int value of the data. * @public */ unsigned int (*data2ui) (DBData *data); /** * Gets void* type data from struct DBData. * If data is not void* type, returns NULL. * @param data Data * @return Void* value of the data. * @public */ void* (*data2ptr) (DBData *data); /** * Initialize the database system. * @public * @see #db_final(void) */ void (*init) (void); /** * Finalize the database system. * Frees the memory used by the block reusage system. * @public * @see #db_init(void) */ void (*final) (void); }; struct db_interface *DB; void db_defaults(void); // Link DB System - From jAthena struct linkdb_node { struct linkdb_node *next; struct linkdb_node *prev; void *key; void *data; }; typedef void (*LinkDBFunc)(void* key, void* data, va_list args); #ifdef HERCULES_CORE void linkdb_insert (struct linkdb_node** head, void *key, void* data); // Doesn't take into account duplicate keys void linkdb_replace (struct linkdb_node** head, void *key, void* data); // Takes into account duplicate keys void* linkdb_search (struct linkdb_node** head, void *key); void* linkdb_erase (struct linkdb_node** head, void *key); void linkdb_final (struct linkdb_node** head); void linkdb_vforeach(struct linkdb_node** head, LinkDBFunc func, va_list ap); void linkdb_foreach (struct linkdb_node** head, LinkDBFunc func, ...); #endif // HERCULES_CORE /// Finds an entry in an array. /// ex: ARR_FIND(0, size, i, list[i] == target); /// /// @param __start Starting index (ex: 0) /// @param __end End index (ex: size of the array) /// @param __var Index variable /// @param __cmp Expression that returns true when the target entry is found #define ARR_FIND(__start, __end, __var, __cmp) \ do{ \ for( (__var) = (__start); (__var) < (__end); ++(__var) ) \ if( __cmp ) \ break; \ }while(0) /// Moves an entry of the array. /// Use ARR_MOVERIGHT/ARR_MOVELEFT if __from and __to are direct numbers. /// ex: ARR_MOVE(i, 0, list, int);// move index i to index 0 /// /// /// @param __from Initial index of the entry /// @param __to Target index of the entry /// @param __arr Array /// @param __type Type of entry #define ARR_MOVE(__from, __to, __arr, __type) \ do{ \ if( (__from) != (__to) ) \ { \ __type __backup__; \ memmove(&__backup__, (__arr)+(__from), sizeof(__type)); \ if( (__from) < (__to) ) \ memmove((__arr)+(__from), (__arr)+(__from)+1, ((__to)-(__from))*sizeof(__type)); \ else if( (__from) > (__to) ) \ memmove((__arr)+(__to)+1, (__arr)+(__to), ((__from)-(__to))*sizeof(__type)); \ memmove((__arr)+(__to), &__backup__, sizeof(__type)); \ } \ }while(0) /// Moves an entry of the array to the right. /// ex: ARR_MOVERIGHT(1, 4, list, int);// move index 1 to index 4 /// /// @param __from Initial index of the entry /// @param __to Target index of the entry /// @param __arr Array /// @param __type Type of entry #define ARR_MOVERIGHT(__from, __to, __arr, __type) \ do{ \ __type __backup__; \ memmove(&__backup__, (__arr)+(__from), sizeof(__type)); \ memmove((__arr)+(__from), (__arr)+(__from)+1, ((__to)-(__from))*sizeof(__type)); \ memmove((__arr)+(__to), &__backup__, sizeof(__type)); \ }while(0) /// Moves an entry of the array to the left. /// ex: ARR_MOVELEFT(3, 0, list, int);// move index 3 to index 0 /// /// @param __from Initial index of the entry /// @param __end Target index of the entry /// @param __arr Array /// @param __type Type of entry #define ARR_MOVELEFT(__from, __to, __arr, __type) \ do{ \ __type __backup__; \ memmove(&__backup__, (__arr)+(__from), sizeof(__type)); \ memmove((__arr)+(__to)+1, (__arr)+(__to), ((__from)-(__to))*sizeof(__type)); \ memmove((__arr)+(__to), &__backup__, sizeof(__type)); \ }while(0) ///////////////////////////////////////////////////////////////////// // Vector library based on defines. (dynamic array) // uses aMalloc, aRealloc, aFree /// Declares an anonymous vector struct. /// /// @param __type Type of data #define VECTOR_DECL(__type) \ struct { \ size_t _max_; \ size_t _len_; \ __type* _data_; \ } /// Declares a named vector struct. /// /// @param __name Structure name /// @param __type Type of data #define VECTOR_STRUCT_DECL(__name,__type) \ struct __name { \ size_t _max_; \ size_t _len_; \ __type* _data_; \ } /// Declares and initializes an anonymous vector variable. /// /// @param __type Type of data /// @param __var Variable name #define VECTOR_VAR(__type,__var) \ VECTOR_DECL(__type) __var = {0,0,NULL} /// Declares and initializes a named vector variable. /// /// @param __name Structure name /// @param __var Variable name #define VECTOR_STRUCT_VAR(__name,__var) \ struct __name __var = {0,0,NULL} /// Initializes a vector. /// /// @param __vec Vector #define VECTOR_INIT(__vec) \ memset(&(__vec), 0, sizeof(__vec)) /// Returns the internal array of values. /// /// @param __vec Vector /// @return Array of values #define VECTOR_DATA(__vec) \ ( (__vec)._data_ ) /// Returns the length of the vector. /// /// @param __vec Vector /// @return Length #define VECTOR_LENGTH(__vec) \ ( (__vec)._len_ ) /// Returns the capacity of the vector. /// /// @param __vec Vector /// @return Capacity #define VECTOR_CAPACITY(__vec) \ ( (__vec)._max_ ) /// Returns the value at the target index. /// Assumes the index exists. /// /// @param __vec Vector /// @param __idx Index /// @return Value #define VECTOR_INDEX(__vec,__idx) \ ( VECTOR_DATA(__vec)[__idx] ) /// Returns the first value of the vector. /// Assumes the array is not empty. /// /// @param __vec Vector /// @return First value #define VECTOR_FIRST(__vec) \ ( VECTOR_INDEX(__vec,0) ) /// Returns the last value of the vector. /// Assumes the array is not empty. /// /// @param __vec Vector /// @return Last value #define VECTOR_LAST(__vec) \ ( VECTOR_INDEX(__vec,VECTOR_LENGTH(__vec)-1) ) /// Resizes the vector. /// Excess values are discarded, new positions are zeroed. /// /// @param __vec Vector /// @param __n Size #define VECTOR_RESIZE(__vec,__n) \ do{ \ if( (__n) > VECTOR_CAPACITY(__vec) ) \ { /* increase size */ \ if( VECTOR_CAPACITY(__vec) == 0 ) VECTOR_DATA(__vec) = aMalloc((__n)*sizeof(VECTOR_FIRST(__vec))); /* allocate new */ \ else VECTOR_DATA(__vec) = aRealloc(VECTOR_DATA(__vec),(__n)*sizeof(VECTOR_FIRST(__vec))); /* reallocate */ \ memset(VECTOR_DATA(__vec)+VECTOR_LENGTH(__vec), 0, (VECTOR_CAPACITY(__vec)-VECTOR_LENGTH(__vec))*sizeof(VECTOR_FIRST(__vec))); /* clear new data */ \ VECTOR_CAPACITY(__vec) = (__n); /* update capacity */ \ } \ else if( (__n) == 0 && VECTOR_CAPACITY(__vec) ) \ { /* clear vector */ \ aFree(VECTOR_DATA(__vec)); VECTOR_DATA(__vec) = NULL; /* free data */ \ VECTOR_CAPACITY(__vec) = 0; /* clear capacity */ \ VECTOR_LENGTH(__vec) = 0; /* clear length */ \ } \ else if( (__n) < VECTOR_CAPACITY(__vec) ) \ { /* reduce size */ \ VECTOR_DATA(__vec) = aRealloc(VECTOR_DATA(__vec),(__n)*sizeof(VECTOR_FIRST(__vec))); /* reallocate */ \ VECTOR_CAPACITY(__vec) = (__n); /* update capacity */ \ if( VECTOR_LENGTH(__vec) > (__n) ) VECTOR_LENGTH(__vec) = (__n); /* update length */ \ } \ }while(0) /// Ensures that the array has the target number of empty positions. /// Increases the capacity in multiples of __step. /// /// @param __vec Vector /// @param __n Empty positions /// @param __step Increase #define VECTOR_ENSURE(__vec,__n,__step) \ do{ \ size_t _empty_ = VECTOR_CAPACITY(__vec)-VECTOR_LENGTH(__vec); \ if( (__n) > _empty_ ) { \ while( (__n) > _empty_ ) _empty_ += (__step); \ VECTOR_RESIZE(__vec,_empty_+VECTOR_LENGTH(__vec)); \ } \ }while(0) /// Inserts a zeroed value in the target index. /// Assumes the index is valid and there is enough capacity. /// /// @param __vec Vector /// @param __idx Index #define VECTOR_INSERTZEROED(__vec,__idx) \ do{ \ if( (__idx) < VECTOR_LENGTH(__vec) ) /* move data */ \ memmove(&VECTOR_INDEX(__vec,(__idx)+1),&VECTOR_INDEX(__vec,__idx),(VECTOR_LENGTH(__vec)-(__idx))*sizeof(VECTOR_FIRST(__vec))); \ memset(&VECTOR_INDEX(__vec,__idx), 0, sizeof(VECTOR_INDEX(__vec,__idx))); /* set zeroed value */ \ ++VECTOR_LENGTH(__vec); /* increase length */ \ }while(0) /// Inserts a value in the target index. (using the '=' operator) /// Assumes the index is valid and there is enough capacity. /// /// @param __vec Vector /// @param __idx Index /// @param __val Value #define VECTOR_INSERT(__vec,__idx,__val) \ do{ \ if( (__idx) < VECTOR_LENGTH(__vec) ) /* move data */ \ memmove(&VECTOR_INDEX(__vec,(__idx)+1),&VECTOR_INDEX(__vec,__idx),(VECTOR_LENGTH(__vec)-(__idx))*sizeof(VECTOR_FIRST(__vec))); \ VECTOR_INDEX(__vec,__idx) = (__val); /* set value */ \ ++VECTOR_LENGTH(__vec); /* increase length */ \ }while(0) /// Inserts a value in the target index. (using memcpy) /// Assumes the index is valid and there is enough capacity. /// /// @param __vec Vector /// @param __idx Index /// @param __val Value #define VECTOR_INSERTCOPY(__vec,__idx,__val) \ VECTOR_INSERTARRAY(__vec,__idx,&(__val),1) /// Inserts the values of the array in the target index. (using memcpy) /// Assumes the index is valid and there is enough capacity. /// /// @param __vec Vector /// @param __idx Index /// @param __pval Array of values /// @param __n Number of values #define VECTOR_INSERTARRAY(__vec,__idx,__pval,__n) \ do{ \ if( (__idx) < VECTOR_LENGTH(__vec) ) /* move data */ \ memmove(&VECTOR_INDEX(__vec,(__idx)+(__n)),&VECTOR_INDEX(__vec,__idx),(VECTOR_LENGTH(__vec)-(__idx))*sizeof(VECTOR_FIRST(__vec))); \ memcpy(&VECTOR_INDEX(__vec,__idx), (__pval), (__n)*sizeof(VECTOR_FIRST(__vec))); /* set values */ \ VECTOR_LENGTH(__vec) += (__n); /* increase length */ \ }while(0) /// Inserts a zeroed value in the end of the vector. /// Assumes there is enough capacity. /// /// @param __vec Vector #define VECTOR_PUSHZEROED(__vec) \ do{ \ memset(&VECTOR_INDEX(__vec,VECTOR_LENGTH(__vec)), 0, sizeof(VECTOR_INDEX(__vec,VECTOR_LENGTH(__vec)))); /* set zeroed value */ \ ++VECTOR_LENGTH(__vec); /* increase length */ \ }while(0) /// Inserts a value in the end of the vector. (using the '=' operator) /// Assumes there is enough capacity. /// /// @param __vec Vector /// @param __val Value #define VECTOR_PUSH(__vec,__val) \ do{ \ VECTOR_INDEX(__vec,VECTOR_LENGTH(__vec)) = (__val); /* set value */ \ ++VECTOR_LENGTH(__vec); /* increase length */ \ }while(0) /// Inserts a value in the end of the vector. (using memcpy) /// Assumes there is enough capacity. /// /// @param __vec Vector /// @param __val Value #define VECTOR_PUSHCOPY(__vec,__val) \ VECTOR_PUSHARRAY(__vec,&(__val),1) /// Inserts the values of the array in the end of the vector. (using memcpy) /// Assumes there is enough capacity. /// /// @param __vec Vector /// @param __pval Array of values /// @param __n Number of values #define VECTOR_PUSHARRAY(__vec,__pval,__n) \ do{ \ memcpy(&VECTOR_INDEX(__vec,VECTOR_LENGTH(__vec)), (__pval), (__n)*sizeof(VECTOR_FIRST(__vec))); /* set values */ \ VECTOR_LENGTH(__vec) += (__n); /* increase length */ \ }while(0) /// Removes and returns the last value of the vector. /// Assumes the array is not empty. /// /// @param __vec Vector /// @return Removed value #define VECTOR_POP(__vec) \ ( VECTOR_INDEX(__vec,--VECTOR_LENGTH(__vec)) ) /// Removes the last N values of the vector and returns the value of the last pop. /// Assumes there are enough values. /// /// @param __vec Vector /// @param __n Number of pops /// @return Last removed value #define VECTOR_POPN(__vec,__n) \ ( VECTOR_INDEX(__vec,(VECTOR_LENGTH(__vec)-=(__n))) ) /// Removes the target index from the vector. /// Assumes the index is valid and there are enough values. /// /// @param __vec Vector /// @param __idx Index #define VECTOR_ERASE(__vec,__idx) \ VECTOR_ERASEN(__vec,__idx,1) /// Removes N values from the target index of the vector. /// Assumes the index is valid and there are enough values. /// /// @param __vec Vector /// @param __idx Index /// @param __n Number of values #define VECTOR_ERASEN(__vec,__idx,__n) \ do{ \ if( (__idx) < VECTOR_LENGTH(__vec)-(__n) ) /* move data */ \ memmove(&VECTOR_INDEX(__vec,__idx),&VECTOR_INDEX(__vec,(__idx)+(__n)),(VECTOR_LENGTH(__vec)-((__idx)+(__n)))*sizeof(VECTOR_FIRST(__vec))); \ VECTOR_LENGTH(__vec) -= (__n); /* decrease length */ \ }while(0) /// Clears the vector, freeing allocated data. /// /// @param __vec Vector #define VECTOR_CLEAR(__vec) \ do{ \ if( VECTOR_CAPACITY(__vec) ) \ { \ aFree(VECTOR_DATA(__vec)); VECTOR_DATA(__vec) = NULL; /* clear allocated array */ \ VECTOR_CAPACITY(__vec) = 0; /* clear capacity */ \ VECTOR_LENGTH(__vec) = 0; /* clear length */ \ } \ }while(0) ///////////////////////////////////////////////////////////////////// // Binary heap library based on defines. (uses the vector defines above) // uses aMalloc, aRealloc, aFree // WARNING: BHEAP implementation details affect behaviour of A* pathfinding /// Declares an anonymous binary heap struct. /// /// @param __type Type of data #define BHEAP_DECL(__type) VECTOR_DECL(__type) /// Declares a named binary heap struct. /// /// @param __name Structure name /// @param __type Type of data #define BHEAP_STRUCT_DECL(__name,__type) VECTOR_STRUCT_DECL(__name,__type) /// Declares and initializes an anonymous binary heap variable. /// /// @param __type Type of data /// @param __var Variable name #define BHEAP_VAR(__type,__var) VECTOR_VAR(__type,__var) /// Declares and initializes a named binary heap variable. /// /// @param __name Structure name /// @param __var Variable name #define BHEAP_STRUCT_VAR(__name,__var) VECTOR_STRUCT_VAR(__name,__var) /// Initializes a heap. /// /// @param __heap Binary heap #define BHEAP_INIT(__heap) VECTOR_INIT(__heap) /// Returns the internal array of values. /// /// @param __heap Binary heap /// @return Array of values #define BHEAP_DATA(__heap) VECTOR_DATA(__heap) /// Returns the length of the heap. /// /// @param __heap Binary heap /// @return Length #define BHEAP_LENGTH(__heap) VECTOR_LENGTH(__heap) /// Returns the capacity of the heap. /// /// @param __heap Binary heap /// @return Capacity #define BHEAP_CAPACITY(__heap) VECTOR_CAPACITY(__heap) /// Ensures that the heap has the target number of empty positions. /// Increases the capacity in multiples of __step. /// /// @param __heap Binary heap /// @param __n Empty positions /// @param __step Increase #define BHEAP_ENSURE(__heap,__n,__step) VECTOR_ENSURE(__heap,__n,__step) /// Returns the top value of the heap. /// Assumes the heap is not empty. /// /// @param __heap Binary heap /// @return Value at the top #define BHEAP_PEEK(__heap) VECTOR_INDEX(__heap,0) /// Inserts a value in the heap. (using the '=' operator) /// Assumes there is enough capacity. /// /// The comparator takes two values as arguments, returns: /// - negative if the first value is on the top /// - positive if the second value is on the top /// - 0 if they are equal /// /// @param __heap Binary heap /// @param __val Value /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_PUSH(__heap,__val,__topcmp,__swp) \ do{ \ size_t _i_ = VECTOR_LENGTH(__heap); \ VECTOR_PUSH(__heap,__val); /* insert at end */ \ while( _i_ ) \ { /* restore heap property in parents */ \ size_t _parent_ = (_i_-1)/2; \ if( __topcmp(VECTOR_INDEX(__heap,_parent_),VECTOR_INDEX(__heap,_i_)) < 0 ) \ break; /* done */ \ __swp(VECTOR_INDEX(__heap,_parent_),VECTOR_INDEX(__heap,_i_)); \ _i_ = _parent_; \ } \ }while(0) /// See BHEAP_PUSH. Version used by A* implementation, matching client bheap. /// /// @param __heap Binary heap /// @param __val Value /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_PUSH2(__heap,__val,__topcmp,__swp) \ do{ \ size_t _i_ = VECTOR_LENGTH(__heap); \ VECTOR_PUSH(__heap,__val); /* insert at end */ \ BHEAP_SIFTDOWN(__heap,0,_i_,__topcmp,__swp); \ }while(0) /// Removes the top value of the heap. (using the '=' operator) /// Assumes the heap is not empty. /// /// The comparator takes two values as arguments, returns: /// - negative if the first value is on the top /// - positive if the second value is on the top /// - 0 if they are equal /// /// @param __heap Binary heap /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_POP(__heap,__topcmp,__swp) BHEAP_POPINDEX(__heap,0,__topcmp,__swp) /// See BHEAP_POP. Version used by A* implementation, matching client bheap. /// /// @param __heap Binary heap /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_POP2(__heap,__topcmp,__swp) \ do{ \ VECTOR_INDEX(__heap,0) = VECTOR_POP(__heap); /* put last at index */ \ if( !VECTOR_LENGTH(__heap) ) /* removed last, nothing to do */ \ break; \ BHEAP_SIFTUP(__heap,0,__topcmp,__swp); \ }while(0) /// Removes the target value of the heap. (using the '=' operator) /// Assumes the index exists. /// /// The comparator takes two values as arguments, returns: /// - negative if the first value is on the top /// - positive if the second value is on the top /// - 0 if they are equal /// /// @param __heap Binary heap /// @param __idx Index /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_POPINDEX(__heap,__idx,__topcmp,__swp) \ do{ \ size_t _i_ = __idx; \ VECTOR_INDEX(__heap,__idx) = VECTOR_POP(__heap); /* put last at index */ \ if( _i_ >= VECTOR_LENGTH(__heap)) /* removed last, nothing to do */ \ break; \ while( _i_ ) \ { /* restore heap property in parents */ \ size_t _parent_ = (_i_-1)/2; \ if( __topcmp(VECTOR_INDEX(__heap,_parent_),VECTOR_INDEX(__heap,_i_)) < 0 ) \ break; /* done */ \ __swp(VECTOR_INDEX(__heap,_parent_),VECTOR_INDEX(__heap,_i_)); \ _i_ = _parent_; \ } \ while( _i_ < VECTOR_LENGTH(__heap) ) \ { /* restore heap property in childs */ \ size_t _lchild_ = _i_*2 + 1; \ size_t _rchild_ = _i_*2 + 2; \ if( (_lchild_ >= VECTOR_LENGTH(__heap) || __topcmp(VECTOR_INDEX(__heap,_i_),VECTOR_INDEX(__heap,_lchild_)) <= 0) && \ (_rchild_ >= VECTOR_LENGTH(__heap) || __topcmp(VECTOR_INDEX(__heap,_i_),VECTOR_INDEX(__heap,_rchild_)) <= 0) ) \ break; /* done */ \ else if( _rchild_ >= VECTOR_LENGTH(__heap) || __topcmp(VECTOR_INDEX(__heap,_lchild_),VECTOR_INDEX(__heap,_rchild_)) <= 0 ) \ { /* left child */ \ __swp(VECTOR_INDEX(__heap,_i_),VECTOR_INDEX(__heap,_lchild_)); \ _i_ = _lchild_; \ } \ else \ { /* right child */ \ __swp(VECTOR_INDEX(__heap,_i_),VECTOR_INDEX(__heap,_rchild_)); \ _i_ = _rchild_; \ } \ } \ }while(0) /// Follow path up towards (but not all the way to) the root, swapping nodes until finding /// a place where the new item that was placed at __idx fits. /// Only goes as high as __startidx (usually 0). /// /// @param __heap Binary heap /// @param __startidx Index of an ancestor of __idx /// @param __idx Index of an inserted element /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_SIFTDOWN(__heap,__startidx,__idx,__topcmp,__swp) \ do{ \ size_t _i2_ = __idx; \ while( _i2_ > __startidx ) \ { /* restore heap property in parents */ \ size_t _parent_ = (_i2_-1)/2; \ if( __topcmp(VECTOR_INDEX(__heap,_parent_),VECTOR_INDEX(__heap,_i2_)) <= 0 ) \ break; /* done */ \ __swp(VECTOR_INDEX(__heap,_parent_),VECTOR_INDEX(__heap,_i2_)); \ _i2_ = _parent_; \ } \ }while(0) /// Repeatedly swap the smaller child with parent, after placing a new item at __idx. /// /// @param __heap Binary heap /// @param __idx Index of an inserted element /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_SIFTUP(__heap,__idx,__topcmp,__swp) \ do{ \ size_t _i_ = __idx; \ size_t _lchild_ = _i_*2 + 1; \ while( _lchild_ < VECTOR_LENGTH(__heap) ) \ { /* restore heap property in childs */ \ size_t _rchild_ = _i_*2 + 2; \ if( _rchild_ >= VECTOR_LENGTH(__heap) || __topcmp(VECTOR_INDEX(__heap,_lchild_),VECTOR_INDEX(__heap,_rchild_)) < 0 ) \ { /* left child */ \ __swp(VECTOR_INDEX(__heap,_i_),VECTOR_INDEX(__heap,_lchild_)); \ _i_ = _lchild_; \ } \ else \ { /* right child */ \ __swp(VECTOR_INDEX(__heap,_i_),VECTOR_INDEX(__heap,_rchild_)); \ _i_ = _rchild_; \ } \ _lchild_ = _i_*2 + 1; \ } \ BHEAP_SIFTDOWN(__heap,__idx,_i_,__topcmp,__swp); \ }while(0) /// Call this after modifying the item at __idx__ to restore the heap /// /// @param __heap Binary heap /// @param __idx Index /// @param __topcmp Comparator /// @param __swp Swapper #define BHEAP_UPDATE(__heap,__idx,__topcmp,__swp) \ do{ \ BHEAP_SIFTDOWN(__heap,0,__idx,__topcmp,__swp); \ BHEAP_SIFTUP(__heap,__idx,__topcmp,__swp); \ }while(0) /// Clears the binary heap, freeing allocated data. /// /// @param __heap Binary heap #define BHEAP_CLEAR(__heap) VECTOR_CLEAR(__heap) /// Generic comparator for a min-heap. (minimum value at top) /// Returns -1 if v1 is smaller, 1 if v2 is smaller, 0 if equal. /// /// @param v1 First value /// @param v2 Second value /// @return negative if v1 is top, positive if v2 is top, 0 if equal #define BHEAP_MINTOPCMP(v1,v2) ( v1 == v2 ? 0 : v1 < v2 ? -1 : 1 ) /// Generic comparator for a max-heap. (maximum value at top) /// Returns -1 if v1 is bigger, 1 if v2 is bigger, 0 if equal. /// /// @param v1 First value /// @param v2 Second value /// @return negative if v1 is top, positive if v2 is top, 0 if equal #define BHEAP_MAXTOPCMP(v1,v2) ( v1 == v2 ? 0 : v1 > v2 ? -1 : 1 ) #endif /* COMMON_DB_H */