/* * The Mana World * Copyright 2004 The Mana World Development Team * * This file is part of The Mana World. * * The Mana World is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * The Mana World is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with The Mana World; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id$ */ #include "main.h" #include "map.h" #include "log.h" #include "being.h" #include #include #include Map tiledMap; #define OLD_MAP_WIDTH 200 #define OLD_MAP_HEIGHT 200 /** * Old tile structure. Used for loading the old map format. */ struct TILE { /** * Data field filled at follows: * *
     *  1st byte: [1][1][1][1][1][1][1][1]
     *  2nd byte: [1][1][2][2][2][2][2][2]
     *  3rd byte: [2][2][2][2][3][3][3][3]
     *  4th byte: [3][3][3][3][3][3][W][A]
     * 
* * Legend: * 1 - Ground layer (grass, water, ...) * 2 - Fringe layer (decoration on top of ground layer, but below beings) * 3 - Over layer (roofs, tree leaves, ...) * W - Walkability flag * A - Animated tile flag */ char data[4]; char flags; }; /** * Old map structure. Used for loading the old map format. */ struct MAP { TILE tiles[OLD_MAP_WIDTH][OLD_MAP_HEIGHT]; char tileset[20]; char bg_music[20]; }; Tile::Tile(): whichList(0) { } Location::Location(int x, int y, Tile *tile): x(x), y(y), tile(tile) { } bool Location::operator< (const Location &loc) const { return tile->Fcost > loc.tile->Fcost; } Map::Map(): width(0), height(0), onClosedList(1), onOpenList(2) { tiles = new Tile[width * height]; } Map::Map(int width, int height): width(width), height(height), onClosedList(1), onOpenList(2) { tiles = new Tile[width * height]; } Map::~Map() { delete[] tiles; } bool Map::load(const std::string &mapFile) { FILE *file = fopen(mapFile.c_str(), "r"); if (!file) { log("Warning: %s", mapFile.c_str()); return false; } MAP oldMap; fread(&oldMap, sizeof(MAP), 1, file); fclose(file); setSize(OLD_MAP_WIDTH, OLD_MAP_HEIGHT); // Transfer tile data int x, y; for (y = 0; y < OLD_MAP_HEIGHT; y++) { for (x = 0; x < OLD_MAP_WIDTH; x++) { unsigned short id; // Layer 0 id = MAKEWORD(oldMap.tiles[x][y].data[1] & 0x00c0, oldMap.tiles[x][y].data[0]); id >>= 6; setTile(x, y, 0, id); // Layer 1 id = MAKEWORD(oldMap.tiles[x][y].data[2] & 0x00f0, oldMap.tiles[x][y].data[1] & 0x003f); id >>= 4; setTile(x, y, 1, id); // Layer 2 id = MAKEWORD(oldMap.tiles[x][y].data[3] & 0x00fc, oldMap.tiles[x][y].data[2] & 0x000f); id >>= 2; setTile(x, y, 2, id); // Walkability setWalk(x, y, (oldMap.tiles[x][y].data[3] & 0x0002) > 0); } } return true; } bool loadXmlMap(const std::string &mapFile) { xmlDocPtr doc = xmlReadFile(mapFile.c_str(), NULL, 0); if (!doc) { log("Warning: %s", mapFile.c_str()); return false; } xmlFreeDoc(doc); return false; } void Map::setSize(int width, int height) { this->width = width; this->height = height; delete[] tiles; tiles = new Tile[width * height]; } void Map::setWalk(int x, int y, bool walkable) { if (walkable) { tiles[x + y * width].flags |= TILE_WALKABLE; } else { tiles[x + y * width].flags &= ~TILE_WALKABLE; } } bool Map::getWalk(int x, int y) { bool ret = (tiles[x + y * width].flags & TILE_WALKABLE) != 0; if (ret) { // Check for colliding into a being std::list::iterator i = beings.begin(); while (i != beings.end() && ret) { Being *being = (*i); if (being->x == x && being->y == y) { ret = false; } i++; } } return ret; } void Map::setTile(int x, int y, int layer, int id) { tiles[x + y * width].layers[layer] = id; } int Map::getTile(int x, int y, int layer) { return tiles[x + y * width].layers[layer]; } Tile *Map::getTile(int x, int y) { return &tiles[x + y * width]; } int Map::getWidth() { return width; } int Map::getHeight() { return height; } PATH_NODE *Map::findPath(int startX, int startY, int destX, int destY) { // Declare open list, a list with open tiles sorted on F cost std::priority_queue openList; // Return when destination not walkable if (!getWalk(destX, destY)) return NULL; // Reset starting tile's G cost to 0 Tile *startTile = getTile(startX, startY); startTile->Gcost = 0; // Add the start point to the open list openList.push(Location(startX, startY, startTile)); bool foundPath = false; // Keep trying new open tiles until no more tiles to try or target found while (!openList.empty() && !foundPath) { // Take the location with the lowest F cost from the open list, and // add it to the closed list. Location curr = openList.top(); openList.pop(); // If the tile is already on the closed list, this means it has already // been processed with a shorter path to the start point (lower G cost) if (curr.tile->whichList == onClosedList) { continue; } // Put the current tile on the closed list curr.tile->whichList = onClosedList; // Check the adjacent tiles for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { // Calculate location of tile to check int x = curr.x + dx; int y = curr.y + dy; // Skip if if we're checking the same tile we're leaving from, // or if the new location falls outside of the map boundaries if ((dx == 0 && dy == 0) || (x < 0 || y < 0 || x >= width || y >= height)) { continue; } Tile *newTile = getTile(x, y); // Skip if the tile is on the closed list or is not walkable if (newTile->whichList == onClosedList || !getWalk(x, y)) { continue; } // When taking a diagonal step, verify that we can skip the // corner. We allow skipping past beings but not past non- // walkable tiles. if (dx != 0 && dy != 0) { Tile *t1 = getTile(curr.x, curr.y + dy); Tile *t2 = getTile(curr.x + dx, curr.y); if ((t1->flags & TILE_WALKABLE) == 0 || (t2->flags & TILE_WALKABLE) == 0) { continue; } } // Calculate G cost for this route, 10 for moving straight and // 14 for moving diagonal int Gcost = curr.tile->Gcost + ((dx == 0 || dy == 0) ? 10 : 14); if (newTile->whichList != onOpenList) { // Found a new tile (not on open nor on closed list) // Update Hcost of the new tile using Manhatten distance newTile->Hcost = 10 * (abs(x - destX) + abs(y - destY)); // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Update Gcost and Fcost of new tile newTile->Gcost = Gcost; newTile->Fcost = newTile->Gcost + newTile->Hcost; if (x != destX || y != destY) { // Add this tile to the open list newTile->whichList = onOpenList; openList.push(Location(x, y, newTile)); } else { // Target location was found foundPath = true; } } else if (Gcost < newTile->Gcost) { // Found a shorter route. // Update Gcost and Fcost of the new tile newTile->Gcost = Gcost; newTile->Fcost = newTile->Gcost + newTile->Hcost; // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Add this tile to the open list (it's already // there, but this instance has a lower F score) openList.push(Location(x, y, newTile)); } } } } // Two new values to indicate wether a tile is on the open or closed list, // this way we don't have to clear all the values between each pathfinding. onClosedList += 2; onOpenList += 2; // If a path has been found, iterate backwards using the parent locations // to extract it. if (foundPath) { PATH_NODE *path = new PATH_NODE(destX, destY); int pathX = destX; int pathY = destY; while (pathX != startX || pathY != startY) { // Find out the next parent Tile *tile = getTile(pathX, pathY); pathX = tile->parentX; pathY = tile->parentY; // Add the new path node to the start of the path list PATH_NODE *pn = new PATH_NODE(pathX, pathY); pn->next = path; path = pn; } return path; } // No path found return NULL; }