/* * The Mana World * Copyright 2004 The Mana World Development Team * * This file is part of The Mana World. * * The Mana World is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * The Mana World is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with The Mana World; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id$ */ #include "map.h" #include MetaTile::MetaTile(): whichList(0) { } Location::Location(int x, int y, MetaTile *tile): x(x), y(y), tile(tile) { } bool Location::operator< (const Location &loc) const { return tile->Fcost > loc.tile->Fcost; } Map::Map(): width(0), height(0), tileWidth(32), tileHeight(32), onClosedList(1), onOpenList(2) { metaTiles = new MetaTile[width * height]; tiles = new Image*[width * height * 3]; } Map::Map(int width, int height): width(width), height(height), tileWidth(32), tileHeight(32), onClosedList(1), onOpenList(2) { metaTiles = new MetaTile[width * height]; tiles = new Image*[width * height * 3]; } Map::~Map() { delete[] metaTiles; delete[] tiles; } void Map::setSize(int width, int height) { this->width = width; this->height = height; delete[] metaTiles; delete[] tiles; metaTiles = new MetaTile[width * height]; tiles = new Image*[width * height * 3]; } void Map::draw(Graphics *graphics, int scrollX, int scrollY, int layer) { int startX = scrollX / 32; int startY = scrollY / 32; int endX = (graphics->getWidth() + scrollX + 31) / 32; int endY = (graphics->getHeight() + scrollY + 31) / 32; if (startX < 0) startX = 0; if (startY < 0) startY = 0; if (endX >= width) endX = width - 1; if (endY >= height) endY = height - 1; for (int y = startY; y < endY; y++) { for (int x = startX; x < endX; x++) { Image *img = getTile(x, y, layer); if (img) { img->draw(screen, x * 32 - scrollX, y * 32 - scrollY); } } } } void Map::setWalk(int x, int y, bool walkable) { metaTiles[x + y * width].walkable = walkable; } bool Map::getWalk(int x, int y) { // If walkable, check for colliding into a being if (!tileCollides(x, y)) { std::list::iterator i = beings.begin(); while (i != beings.end()) { Being *being = (*i); // Collision when non-portal being is found at this location if (being->x == x && being->y == y && being->job != 45) { return false; } i++; } return true; } else { return false; } } bool Map::tileCollides(int x, int y) { // You can't walk outside of the map if (x < 0 || y < 0 || x >= width || y >= height) { return true; } // Check if the tile is walkable return !metaTiles[x + y * width].walkable; } void Map::setTile(int x, int y, int layer, Image *img) { tiles[x + y * width + layer * (width * height)] = img; } Image* Map::getTile(int x, int y, int layer) { return tiles[x + y * width + layer * (width * height)]; } MetaTile* Map::getMetaTile(int x, int y) { return &metaTiles[x + y * width]; } int Map::getWidth() { return width; } int Map::getHeight() { return height; } int Map::getTileWidth() { return tileWidth; } int Map::getTileHeight() { return tileHeight; } std::string Map::getProperty(const std::string &name) { std::map::iterator i = properties.find(name); if (i != properties.end()) { return (*i).second; } return ""; } bool Map::hasProperty(const std::string &name) { return (properties.find(name) != properties.end()); } void Map::setProperty(const std::string &name, const std::string &value) { properties[name] = value; } std::list Map::findPath(int startX, int startY, int destX, int destY) { // Path to be built up (empty by default) std::list path; // Declare open list, a list with open tiles sorted on F cost std::priority_queue openList; // Return when destination not walkable if (!getWalk(destX, destY)) return path; // Reset starting tile's G cost to 0 MetaTile *startTile = getMetaTile(startX, startY); startTile->Gcost = 0; // Add the start point to the open list openList.push(Location(startX, startY, startTile)); bool foundPath = false; // Keep trying new open tiles until no more tiles to try or target found while (!openList.empty() && !foundPath) { // Take the location with the lowest F cost from the open list, and // add it to the closed list. Location curr = openList.top(); openList.pop(); // If the tile is already on the closed list, this means it has already // been processed with a shorter path to the start point (lower G cost) if (curr.tile->whichList == onClosedList) { continue; } // Put the current tile on the closed list curr.tile->whichList = onClosedList; // Check the adjacent tiles for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { // Calculate location of tile to check int x = curr.x + dx; int y = curr.y + dy; // Skip if if we're checking the same tile we're leaving from, // or if the new location falls outside of the map boundaries if ((dx == 0 && dy == 0) || (x < 0 || y < 0 || x >= width || y >= height)) { continue; } MetaTile *newTile = getMetaTile(x, y); // Skip if the tile is on the closed list or is not walkable if (newTile->whichList == onClosedList || !getWalk(x, y)) { continue; } // When taking a diagonal step, verify that we can skip the // corner. We allow skipping past beings but not past non- // walkable tiles. if (dx != 0 && dy != 0) { MetaTile *t1 = getMetaTile(curr.x, curr.y + dy); MetaTile *t2 = getMetaTile(curr.x + dx, curr.y); if (!(t1->walkable && t2->walkable)) { continue; } } // Calculate G cost for this route, 10 for moving straight and // 14 for moving diagonal int Gcost = curr.tile->Gcost + ((dx == 0 || dy == 0) ? 10 : 14); // Skip if Gcost becomes too much // Warning: probably not entirely accurate if (Gcost > 200) { continue; } if (newTile->whichList != onOpenList) { // Found a new tile (not on open nor on closed list) // Update Hcost of the new tile using Manhatten distance newTile->Hcost = 10 * (abs(x - destX) + abs(y - destY)); // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Update Gcost and Fcost of new tile newTile->Gcost = Gcost; newTile->Fcost = newTile->Gcost + newTile->Hcost; if (x != destX || y != destY) { // Add this tile to the open list newTile->whichList = onOpenList; openList.push(Location(x, y, newTile)); } else { // Target location was found foundPath = true; } } else if (Gcost < newTile->Gcost) { // Found a shorter route. // Update Gcost and Fcost of the new tile newTile->Gcost = Gcost; newTile->Fcost = newTile->Gcost + newTile->Hcost; // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Add this tile to the open list (it's already // there, but this instance has a lower F score) openList.push(Location(x, y, newTile)); } } } } // Two new values to indicate whether a tile is on the open or closed list, // this way we don't have to clear all the values between each pathfinding. onClosedList += 2; onOpenList += 2; // If a path has been found, iterate backwards using the parent locations // to extract it. if (foundPath) { int pathX = destX; int pathY = destY; while (pathX != startX || pathY != startY) { // Add the new path node to the start of the path list path.push_front(PATH_NODE(pathX, pathY)); // Find out the next parent MetaTile *tile = getMetaTile(pathX, pathY); pathX = tile->parentX; pathY = tile->parentY; } } return path; }