#include "md5calc.hpp" #include #include "../strings/xstring.hpp" #include "../strings/vstring.hpp" #include "../io/read.hpp" #include "cxxstdio.hpp" #include "random.hpp" #include "utils.hpp" #include "../poison.hpp" // auxilary data /* sin() constant table # Reformatted output of: echo 'scale=40; obase=16; for (i=1;i<=64;i++) print 2^32 * sin(i), "\n"' | bc | sed 's/^-//;s/^/0x/;s/\..*$/,/' */ static const uint32_t T[64] = { // used by round 1 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, //0 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, //4 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, //8 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, //12 // used by round 2 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, //16 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, //20 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, //24 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, //28 // used by round 3 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, //32 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, //36 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, //40 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, //44 // used by round 4 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, //48 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, //52 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, //56 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391, //60 }; // auxilary functions // note - the RFC defines these by non-CS conventions: or=v, and=(empty) static uint32_t rotate_left(uint32_t val, unsigned shift) { return val << shift | val >> (32 - shift); } static uint32_t F(uint32_t X, uint32_t Y, uint32_t Z) { return (X & Y) | (~X & Z); } static uint32_t G(uint32_t X, uint32_t Y, uint32_t Z) { return (X & Z) | (Y & ~Z); } static uint32_t H(uint32_t X, uint32_t Y, uint32_t Z) { return X ^ Y ^ Z; } static uint32_t I(uint32_t X, uint32_t Y, uint32_t Z) { return Y ^ (X | ~Z); } static const struct { uint8_t k : 4; uint8_t : 0; uint8_t s : 5; // uint8_t i : 6; just increments constantly, from 1 .. 64 over all rounds } MD5_round1[16] = { { 0, 7}, { 1, 12}, { 2, 17}, { 3, 22}, { 4, 7}, { 5, 12}, { 6, 17}, { 7, 22}, { 8, 7}, { 9, 12}, {10, 17}, {11, 22}, {12, 7}, {13, 12}, {14, 17}, {15, 22}, }, MD5_round2[16] = { { 1, 5}, { 6, 9}, {11, 14}, { 0, 20}, { 5, 5}, {10, 9}, {15, 14}, { 4, 20}, { 9, 5}, {14, 9}, { 3, 14}, { 8, 20}, {13, 5}, { 2, 9}, { 7, 14}, {12, 20}, }, MD5_round3[16] = { { 5, 4}, { 8, 11}, {11, 16}, {14, 23}, { 1, 4}, { 4, 11}, { 7, 16}, {10, 23}, {13, 4}, { 0, 11}, { 3, 16}, { 6, 23}, { 9, 4}, {12, 11}, {15, 16}, { 2, 23}, }, MD5_round4[16] = { { 0, 6}, { 7, 10}, {14, 15}, { 5, 21}, {12, 6}, { 3, 10}, {10, 15}, { 1, 21}, { 8, 6}, {15, 10}, { 6, 15}, {13, 21}, { 4, 6}, {11, 10}, { 2, 15}, { 9, 21}, }; void MD5_init(MD5_state* state) { // in the RFC, these are specified as bytes, interpreted as little-endian state->val[0] = 0x67452301; state->val[1] = 0xEFCDAB89; state->val[2] = 0x98BADCFE; state->val[3] = 0x10325476; } void MD5_do_block(MD5_state* state, MD5_block block) { #define X block.data #define a state->val[(16 - i) % 4] #define b state->val[(17 - i) % 4] #define c state->val[(18 - i) % 4] #define d state->val[(19 - i) % 4] // save the values const MD5_state saved = *state; // round 1 for (int i = 0; i < 16; i++) { #define k MD5_round1[i].k #define s MD5_round1[i].s a = b + rotate_left(a + F(b, c, d) + X[k] + T[i + 0x0], s); #undef k #undef s } // round 2 for (int i = 0; i < 16; i++) { #define k MD5_round2[i].k #define s MD5_round2[i].s a = b + rotate_left(a + G(b, c, d) + X[k] + T[i + 0x10], s); #undef k #undef s } // round 3 for (int i = 0; i < 16; i++) { #define k MD5_round3[i].k #define s MD5_round3[i].s a = b + rotate_left(a + H(b, c, d) + X[k] + T[i + 0x20], s); #undef k #undef s } // round 4 for (int i = 0; i < 16; i++) { #define k MD5_round4[i].k #define s MD5_round4[i].s a = b + rotate_left(a + I(b, c, d) + X[k] + T[i + 0x30], s); #undef k #undef s } // adjust state based on original state->val[0] += saved.val[0]; state->val[1] += saved.val[1]; state->val[2] += saved.val[2]; state->val[3] += saved.val[3]; #undef a #undef b #undef c #undef d } void MD5_to_bin(MD5_state state, md5_binary& out) { for (int i = 0; i < 0x10; i++) out[i] = state.val[i / 4] >> 8 * (i % 4); } static const char hex[] = "0123456789abcdef"; void MD5_to_str(MD5_state state, md5_string& out_) { md5_binary bin; MD5_to_bin(state, bin); char out[0x20]; for (int i = 0; i < 0x10; i++) out[2 * i] = hex[bin[i] >> 4], out[2 * i + 1] = hex[bin[i] & 0xf]; out_ = stringish(XString(out, out + 0x20, nullptr)); } MD5_state MD5_from_string(XString msg) { MD5_state state; MD5_init(&state); MD5_block block; const uint64_t msg_full_len = msg.size(); while (msg.size() >= 64) { for (int i = 0; i < 0x10; i++) X[i] = msg[4 * i + 0] | msg[4 * i + 1] << 8 | msg[4 * i + 2] << 16 | msg[4 * i + 3] << 24; MD5_do_block(&state, block); msg = msg.xslice_t(64); } // now pad 1-512 bits + the 64-bit length - may be two blocks uint8_t buf[0x40] = {}; really_memcpy(buf, reinterpret_cast(msg.data()), msg.size()); buf[msg.size()] = 0x80; // a single one bit if (64 - msg.size() > 8) { for (int i = 0; i < 8; i++) buf[0x38 + i] = (msg_full_len * 8) >> (i * 8); } for (int i = 0; i < 0x10; i++) X[i] = buf[4 * i + 0] | buf[4 * i + 1] << 8 | buf[4 * i + 2] << 16 | buf[4 * i + 3] << 24; MD5_do_block(&state, block); if (64 - msg.size() <= 8) { really_memset0(buf, 0x38); for (int i = 0; i < 8; i++) buf[0x38 + i] = (msg_full_len * 8) >> (i * 8); for (int i = 0; i < 0x10; i++) X[i] = buf[4 * i + 0] | buf[4 * i + 1] << 8 | buf[4 * i + 2] << 16 | buf[4 * i + 3] << 24; MD5_do_block(&state, block); } return state; } // TODO - refactor MD5 into a stream, and merge the implementations // I once implemented an ostream that does it ... MD5_state MD5_from_FILE(io::ReadFile& in) { uint64_t total_len = 0; uint8_t buf[0x40]; uint8_t block_len = 0; MD5_state state; MD5_init(&state); MD5_block block; while (true) { size_t rv = in.get(sign_cast(buf + block_len), 0x40 - block_len); if (!rv) break; total_len += 8 * rv; // in bits block_len += rv; if (block_len != 0x40) continue; for (int i = 0; i < 0x10; i++) X[i] = buf[4 * i + 0] | buf[4 * i + 1] << 8 | buf[4 * i + 2] << 16 | buf[4 * i + 3] << 24; MD5_do_block(&state, block); block_len = 0; } // no more input, just pad and append the length buf[block_len] = 0x80; really_memset0(buf + block_len + 1, 0x40 - block_len - 1); if (block_len < 0x38) { for (int i = 0; i < 8; i++) buf[0x38 + i] = total_len >> i * 8; } for (int i = 0; i < 0x10; i++) X[i] = buf[4 * i + 0] | buf[4 * i + 1] << 8 | buf[4 * i + 2] << 16 | buf[4 * i + 3] << 24; MD5_do_block(&state, block); if (0x38 <= block_len) { really_memset0(buf, 0x38); for (int i = 0; i < 8; i++) buf[0x38 + i] = total_len >> i * 8; for (int i = 0; i < 0x10; i++) X[i] = buf[4 * i + 0] | buf[4 * i + 1] << 8 | buf[4 * i + 2] << 16 | buf[4 * i + 3] << 24; MD5_do_block(&state, block); } return state; } // Hash a password with a salt. // Whoever wrote this FAILS programming AccountCrypt MD5_saltcrypt(AccountPass key, SaltString salt) { char cbuf[64] {}; // hash the key then the salt // buf ends up as a 64-char NUL-terminated string md5_string tbuf, tbuf2; MD5_to_str(MD5_from_string(key), tbuf); MD5_to_str(MD5_from_string(salt), tbuf2); const auto it = std::copy(tbuf.begin(), tbuf.end(), std::begin(cbuf)); auto it2 = std::copy(tbuf2.begin(), tbuf2.end(), it); assert(it2 == std::end(cbuf)); md5_string tbuf3; MD5_to_str(MD5_from_string(XString(std::begin(cbuf), it2, nullptr)), tbuf3); VString<31> obuf; // This truncates the string, but we have to keep it like that for compatibility SNPRINTF(obuf, 32, "!%s$%s", salt, tbuf3); return stringish(obuf); } SaltString make_salt(void) { char salt[5]; for (int i = 0; i < 5; i++) // 126 would probably actually be okay salt[i] = random_::in(48, 125); return stringish(XString(salt + 0, salt + 5, nullptr)); } bool pass_ok(AccountPass password, AccountCrypt crypted) { // crypted is like !salt$hash auto begin = crypted.begin() + 1; auto end = std::find(begin, crypted.end(), '$'); SaltString salt = stringish(crypted.xislice(begin, end)); return crypted == MD5_saltcrypt(password, salt); } // [M|h]ashes up an IP address and a secret key // to return a hopefully unique masked IP. IP4Address MD5_ip(IP4Address ip) { static SaltString secret = make_salt(); // MD5sum a secret + the IP address VString<31> ipbuf; SNPRINTF(ipbuf, 32, "%s %s", ip, secret); md5_binary obuf; MD5_to_bin(MD5_from_string(ipbuf), obuf); // Fold the md5sum to 32 bits, pack the bytes to an in_addr return IP4Address({ static_cast(obuf[0] ^ obuf[1] ^ obuf[8] ^ obuf[9]), static_cast(obuf[2] ^ obuf[3] ^ obuf[10] ^ obuf[11]), static_cast(obuf[4] ^ obuf[5] ^ obuf[12] ^ obuf[13]), static_cast(obuf[6] ^ obuf[7] ^ obuf[14] ^ obuf[15]), }); }