/* SDL2_gfxPrimitives.c: graphics primitives for SDL2 renderers Copyright (C) 2012 Andreas Schiffler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Andreas Schiffler -- aschiffler at ferzkopp dot net */ #include #include #include #include #include "SDL_gfxPrimitives.h" #include "SDL_rotozoom.h" #include "SDL_gfxPrimitives_font.h" /* ---- Structures */ /*! \brief The structure passed to the internal Bresenham iterator. */ typedef struct { Sint16 x, y; int dx, dy, s1, s2, swapdir, error; Uint32 count; } SDL2_gfxBresenhamIterator; /*! \brief The structure passed to the internal Murphy iterator. */ typedef struct { SDL_Renderer *renderer; int u, v; /* delta x , delta y */ int ku, kt, kv, kd; /* loop constants */ int oct2; int quad4; Sint16 last1x, last1y, last2x, last2y, first1x, first1y, first2x, first2y, tempx, tempy; } SDL2_gfxMurphyIterator; /* ---- Pixel */ /*! \brief Draw pixel in currently set color. \param renderer The renderer to draw on. \param x X (horizontal) coordinate of the pixel. \param y Y (vertical) coordinate of the pixel. \returns Returns 0 on success, -1 on failure. */ int pixel(SDL_Renderer *renderer, Sint16 x, Sint16 y) { return SDL_RenderDrawPoint(renderer, x, y); } /*! \brief Draw pixel with blending enabled if a<255. \param renderer The renderer to draw on. \param x X (horizontal) coordinate of the pixel. \param y Y (vertical) coordinate of the pixel. \param color The color value of the pixel to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int pixelColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Uint32 color) { Uint8 *c = (Uint8 *)&color; return pixelRGBA(renderer, x, y, c[0], c[1], c[2], c[3]); } /*! \brief Draw pixel with blending enabled if a<255. \param renderer The renderer to draw on. \param x X (horizontal) coordinate of the pixel. \param y Y (vertical) coordinate of the pixel. \param r The red color value of the pixel to draw. \param g The green color value of the pixel to draw. \param b The blue color value of the pixel to draw. \param a The alpha value of the pixel to draw. \returns Returns 0 on success, -1 on failure. */ int pixelRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); result |= SDL_RenderDrawPoint(renderer, x, y); return result; } /*! \brief Draw pixel with blending enabled and using alpha weight on color. \param renderer The renderer to draw on. \param x The horizontal coordinate of the pixel. \param y The vertical position of the pixel. \param r The red color value of the pixel to draw. \param g The green color value of the pixel to draw. \param b The blue color value of the pixel to draw. \param a The alpha value of the pixel to draw. \param weight The weight multiplied into the alpha value of the pixel. \returns Returns 0 on success, -1 on failure. */ int pixelRGBAWeight(SDL_Renderer * renderer, Sint16 x, Sint16 y, Uint8 r, Uint8 g, Uint8 b, Uint8 a, Uint32 weight) { /* * Modify Alpha by weight */ Uint32 ax = a; ax = ((ax * weight) >> 8); if (ax > 255) { a = 255; } else { a = (Uint8)(ax & 0x000000ff); } return pixelRGBA(renderer, x, y, r, g, b, a); } /* ---- Hline */ /*! \brief Draw horizontal line in currently set color \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. left) of the line. \param x2 X coordinate of the second point (i.e. right) of the line. \param y Y coordinate of the points of the line. \returns Returns 0 on success, -1 on failure. */ int hline(SDL_Renderer * renderer, Sint16 x1, Sint16 x2, Sint16 y) { return SDL_RenderDrawLine(renderer, x1, y, x2, y);; } /*! \brief Draw horizontal line with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. left) of the line. \param x2 X coordinate of the second point (i.e. right) of the line. \param y Y coordinate of the points of the line. \param color The color value of the line to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int hlineColor(SDL_Renderer * renderer, Sint16 x1, Sint16 x2, Sint16 y, Uint32 color) { Uint8 *c = (Uint8 *)&color; return hlineRGBA(renderer, x1, x2, y, c[0], c[1], c[2], c[3]); } /*! \brief Draw horizontal line with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. left) of the line. \param x2 X coordinate of the second point (i.e. right) of the line. \param y Y coordinate of the points of the line. \param r The red value of the line to draw. \param g The green value of the line to draw. \param b The blue value of the line to draw. \param a The alpha value of the line to draw. \returns Returns 0 on success, -1 on failure. */ int hlineRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 x2, Sint16 y, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); result |= SDL_RenderDrawLine(renderer, x1, y, x2, y); return result; } /* ---- Vline */ /*! \brief Draw vertical line with blending. \param renderer The renderer to draw on. \param x X coordinate of the points of the line. \param y1 Y coordinate of the first point (i.e. top) of the line. \param y2 Y coordinate of the second point (i.e. bottom) of the line. \param color The color value of the line to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int vlineColor(SDL_Renderer * renderer, Sint16 x, Sint16 y1, Sint16 y2, Uint32 color) { Uint8 *c = (Uint8 *)&color; return vlineRGBA(renderer, x, y1, y2, c[0], c[1], c[2], c[3]); } /*! \brief Draw vertical line with blending. \param renderer The renderer to draw on. \param x X coordinate of the points of the line. \param y1 Y coordinate of the first point (i.e. top) of the line. \param y2 Y coordinate of the second point (i.e. bottom) of the line. \param r The red value of the line to draw. \param g The green value of the line to draw. \param b The blue value of the line to draw. \param a The alpha value of the line to draw. \returns Returns 0 on success, -1 on failure. */ int vlineRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y1, Sint16 y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); result |= SDL_RenderDrawLine(renderer, x, y1, x, y2); return result; } /* ---- Rectangle */ /*! \brief Draw rectangle with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the rectangle. \param y1 Y coordinate of the first point (i.e. top right) of the rectangle. \param x2 X coordinate of the second point (i.e. bottom left) of the rectangle. \param y2 Y coordinate of the second point (i.e. bottom left) of the rectangle. \param color The color value of the rectangle to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int rectangleColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint32 color) { Uint8 *c = (Uint8 *)&color; return rectangleRGBA(renderer, x1, y1, x2, y2, c[0], c[1], c[2], c[3]); } /*! \brief Draw rectangle with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the rectangle. \param y1 Y coordinate of the first point (i.e. top right) of the rectangle. \param x2 X coordinate of the second point (i.e. bottom left) of the rectangle. \param y2 Y coordinate of the second point (i.e. bottom left) of the rectangle. \param r The red value of the rectangle to draw. \param g The green value of the rectangle to draw. \param b The blue value of the rectangle to draw. \param a The alpha value of the rectangle to draw. \returns Returns 0 on success, -1 on failure. */ int rectangleRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; Sint16 tmp; SDL_Rect rect; /* * Test for special cases of straight lines or single point */ if (x1 == x2) { if (y1 == y2) { return (pixelRGBA(renderer, x1, y1, r, g, b, a)); } else { return (vlineRGBA(renderer, x1, y1, y2, r, g, b, a)); } } else { if (y1 == y2) { return (hlineRGBA(renderer, x1, x2, y1, r, g, b, a)); } } /* * Swap x1, x2 if required */ if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; } /* * Swap y1, y2 if required */ if (y1 > y2) { tmp = y1; y1 = y2; y2 = tmp; } /* * Create destination rect */ rect.x = x1; rect.y = y1; rect.w = x2 - x1; rect.h = y2 - y1; /* * Draw */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); result |= SDL_RenderDrawRect(renderer, &rect); return result; } /* ---- Rounded Rectangle */ /*! \brief Draw rounded-corner rectangle with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the rectangle. \param y1 Y coordinate of the first point (i.e. top right) of the rectangle. \param x2 X coordinate of the second point (i.e. bottom left) of the rectangle. \param y2 Y coordinate of the second point (i.e. bottom left) of the rectangle. \param rad The radius of the corner arc. \param color The color value of the rectangle to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int roundedRectangleColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 rad, Uint32 color) { Uint8 *c = (Uint8 *)&color; return roundedRectangleRGBA(renderer, x1, y1, x2, y2, rad, c[0], c[1], c[2], c[3]); } /*! \brief Draw rounded-corner rectangle with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the rectangle. \param y1 Y coordinate of the first point (i.e. top right) of the rectangle. \param x2 X coordinate of the second point (i.e. bottom left) of the rectangle. \param y2 Y coordinate of the second point (i.e. bottom left) of the rectangle. \param rad The radius of the corner arc. \param r The red value of the rectangle to draw. \param g The green value of the rectangle to draw. \param b The blue value of the rectangle to draw. \param a The alpha value of the rectangle to draw. \returns Returns 0 on success, -1 on failure. */ int roundedRectangleRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 rad, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result = 0; Sint16 tmp; Sint16 w, h; Sint16 xx1, xx2; Sint16 yy1, yy2; /* * Check renderer */ if (renderer == NULL) { return -1; } /* * Check radius vor valid range */ if (rad < 0) { return -1; } /* * Special case - no rounding */ if (rad == 0) { return rectangleRGBA(renderer, x1, y1, x2, y2, r, g, b, a); } /* * Test for special cases of straight lines or single point */ if (x1 == x2) { if (y1 == y2) { return (pixelRGBA(renderer, x1, y1, r, g, b, a)); } else { return (vlineRGBA(renderer, x1, y1, y2, r, g, b, a)); } } else { if (y1 == y2) { return (hlineRGBA(renderer, x1, x2, y1, r, g, b, a)); } } /* * Swap x1, x2 if required */ if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; } /* * Swap y1, y2 if required */ if (y1 > y2) { tmp = y1; y1 = y2; y2 = tmp; } /* * Calculate width&height */ w = x2 - x1; h = y2 - y1; /* * Maybe adjust radius */ if ((rad * 2) > w) { rad = w / 2; } if ((rad * 2) > h) { rad = h / 2; } /* * Draw corners */ xx1 = x1 + rad; xx2 = x2 - rad; yy1 = y1 + rad; yy2 = y2 - rad; result |= arcRGBA(renderer, xx1, yy1, rad, 180, 270, r, g, b, a); result |= arcRGBA(renderer, xx2, yy1, rad, 270, 360, r, g, b, a); result |= arcRGBA(renderer, xx1, yy2, rad, 90, 180, r, g, b, a); result |= arcRGBA(renderer, xx2, yy2, rad, 0, 90, r, g, b, a); /* * Draw lines */ if (xx1 <= xx2) { result |= hlineRGBA(renderer, xx1, xx2, y1, r, g, b, a); result |= hlineRGBA(renderer, xx1, xx2, y2, r, g, b, a); } if (yy1 <= yy2) { result |= vlineRGBA(renderer, x1, yy1, yy2, r, g, b, a); result |= vlineRGBA(renderer, x2, yy1, yy2, r, g, b, a); } return result; } /* ---- Rounded Box */ /*! \brief Draw rounded-corner box (filled rectangle) with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the box. \param y1 Y coordinate of the first point (i.e. top right) of the box. \param x2 X coordinate of the second point (i.e. bottom left) of the box. \param y2 Y coordinate of the second point (i.e. bottom left) of the box. \param rad The radius of the corner arcs of the box. \param color The color value of the box to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int roundedBoxColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 rad, Uint32 color) { Uint8 *c = (Uint8 *)&color; return roundedBoxRGBA(renderer, x1, y1, x2, y2, rad, c[0], c[1], c[2], c[3]); } /*! \brief Draw rounded-corner box (filled rectangle) with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the box. \param y1 Y coordinate of the first point (i.e. top right) of the box. \param x2 X coordinate of the second point (i.e. bottom left) of the box. \param y2 Y coordinate of the second point (i.e. bottom left) of the box. \param rad The radius of the corner arcs of the box. \param r The red value of the box to draw. \param g The green value of the box to draw. \param b The blue value of the box to draw. \param a The alpha value of the box to draw. \returns Returns 0 on success, -1 on failure. */ int roundedBoxRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 rad, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result = 0; Sint16 w, h, tmp; Sint16 xx1, xx2, yy1, yy2; /* * Check destination renderer */ if (renderer == NULL) { return -1; } /* * Check radius vor valid range */ if (rad < 0) { return -1; } /* * Special case - no rounding */ if (rad == 0) { return rectangleRGBA(renderer, x1, y1, x2, y2, r, g, b, a); } /* * Test for special cases of straight lines or single point */ if (x1 == x2) { if (y1 == y2) { return (pixelRGBA(renderer, x1, y1, r, g, b, a)); } else { return (vlineRGBA(renderer, x1, y1, y2, r, g, b, a)); } } else { if (y1 == y2) { return (hlineRGBA(renderer, x1, x2, y1, r, g, b, a)); } } /* * Swap x1, x2 if required */ if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; } /* * Swap y1, y2 if required */ if (y1 > y2) { tmp = y1; y1 = y2; y2 = tmp; } /* * Calculate width&height */ w = x2 - x1; h = y2 - y1; /* * Maybe adjust radius */ if ((rad * 2) > w) { rad = w / 2; } if ((rad * 2) > h) { rad = h / 2; } /* * Draw corners */ xx1 = x1 + rad; xx2 = x2 - rad; yy1 = y1 + rad; yy2 = y2 - rad; result |= filledPieRGBA(renderer, xx1, yy1, rad, 180, 270, r, g, b, a); result |= filledPieRGBA(renderer, xx2, yy1, rad, 270, 360, r, g, b, a); result |= filledPieRGBA(renderer, xx1, yy2, rad, 90, 180, r, g, b, a); result |= filledPieRGBA(renderer, xx2, yy2, rad, 0, 90, r, g, b, a); /* * Draw body */ xx1++; xx2--; yy1++; yy2--; if (xx1 <= xx2) { result |= boxRGBA(renderer, xx1, y1, xx2, y2, r, g, b, a); } if (yy1 <= yy2) { result |= boxRGBA(renderer, x1, yy1, xx1-1, yy2, r, g, b, a); result |= boxRGBA(renderer, xx2+1, yy1, x2, yy2, r, g, b, a); } return result; } /* ---- Box */ /*! \brief Draw box (filled rectangle) with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the box. \param y1 Y coordinate of the first point (i.e. top right) of the box. \param x2 X coordinate of the second point (i.e. bottom left) of the box. \param y2 Y coordinate of the second point (i.e. bottom left) of the box. \param color The color value of the box to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int boxColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint32 color) { Uint8 *c = (Uint8 *)&color; return boxRGBA(renderer, x1, y1, x2, y2, c[0], c[1], c[2], c[3]); } /*! \brief Draw box (filled rectangle) with blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. top right) of the box. \param y1 Y coordinate of the first point (i.e. top right) of the box. \param x2 X coordinate of the second point (i.e. bottom left) of the box. \param y2 Y coordinate of the second point (i.e. bottom left) of the box. \param r The red value of the box to draw. \param g The green value of the box to draw. \param b The blue value of the box to draw. \param a The alpha value of the box to draw. \returns Returns 0 on success, -1 on failure. */ int boxRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; Sint16 tmp; SDL_Rect rect; /* * Test for special cases of straight lines or single point */ if (x1 == x2) { if (y1 == y2) { return (pixelRGBA(renderer, x1, y1, r, g, b, a)); } else { return (vlineRGBA(renderer, x1, y1, y2, r, g, b, a)); } } else { if (y1 == y2) { return (hlineRGBA(renderer, x1, x2, y1, r, g, b, a)); } } /* * Swap x1, x2 if required */ if (x1 > x2) { tmp = x1; x1 = x2; x2 = tmp; } /* * Swap y1, y2 if required */ if (y1 > y2) { tmp = y1; y1 = y2; y2 = tmp; } /* * Create destination rect */ rect.x = x1; rect.y = y1; rect.w = x2 - x1; rect.h = y2 - y1; /* * Draw */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); result |= SDL_RenderFillRect(renderer, &rect); return result; } /* ----- Line */ /*! \brief Draw line with alpha blending using the currently set color. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the line. \param y1 Y coordinate of the first point of the line. \param x2 X coordinate of the second point of the line. \param y2 Y coordinate of the second point of the line. \returns Returns 0 on success, -1 on failure. */ int line(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2) { /* * Draw */ return SDL_RenderDrawLine(renderer, x1, y1, x2, y2); } /*! \brief Draw line with alpha blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the line. \param y1 Y coordinate of the first point of the line. \param x2 X coordinate of the second point of the line. \param y2 Y coordinate of the seond point of the line. \param color The color value of the line to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int lineColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint32 color) { Uint8 *c = (Uint8 *)&color; return lineRGBA(renderer, x1, y1, x2, y2, c[0], c[1], c[2], c[3]); } /*! \brief Draw line with alpha blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the line. \param y1 Y coordinate of the first point of the line. \param x2 X coordinate of the second point of the line. \param y2 Y coordinate of the second point of the line. \param r The red value of the line to draw. \param g The green value of the line to draw. \param b The blue value of the line to draw. \param a The alpha value of the line to draw. \returns Returns 0 on success, -1 on failure. */ int lineRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { /* * Draw */ int result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); result |= SDL_RenderDrawLine(renderer, x1, y1, x2, y2); return result; } /* ---- AA Line */ #define AAlevels 256 #define AAbits 8 /*! \brief Internal function to draw anti-aliased line with alpha blending and endpoint control. This implementation of the Wu antialiasing code is based on Mike Abrash's DDJ article which was reprinted as Chapter 42 of his Graphics Programming Black Book, but has been optimized to work with SDL and utilizes 32-bit fixed-point arithmetic by A. Schiffler. The endpoint control allows the supression to draw the last pixel useful for rendering continous aa-lines with alpha<255. \param dst The surface to draw on. \param x1 X coordinate of the first point of the aa-line. \param y1 Y coordinate of the first point of the aa-line. \param x2 X coordinate of the second point of the aa-line. \param y2 Y coordinate of the second point of the aa-line. \param r The red value of the aa-line to draw. \param g The green value of the aa-line to draw. \param b The blue value of the aa-line to draw. \param a The alpha value of the aa-line to draw. \param draw_endpoint Flag indicating if the endpoint should be drawn; draw if non-zero. \returns Returns 0 on success, -1 on failure. */ int _aalineRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a, int draw_endpoint) { Sint32 xx0, yy0, xx1, yy1; int result; Uint32 intshift, erracc, erradj; Uint32 erracctmp, wgt, wgtcompmask; int dx, dy, tmp, xdir, y0p1, x0pxdir; /* * Keep on working with 32bit numbers */ xx0 = x1; yy0 = y1; xx1 = x2; yy1 = y2; /* * Reorder points if required */ if (yy0 > yy1) { tmp = yy0; yy0 = yy1; yy1 = tmp; tmp = xx0; xx0 = xx1; xx1 = tmp; } /* * Calculate distance */ dx = xx1 - xx0; dy = yy1 - yy0; /* * Check for special cases */ if (dx == 0) { /* * Vertical line */ if (draw_endpoint) { return (vlineRGBA(renderer, x1, y1, y2, r, g, b, a)); } else { if (dy>0) { return (vlineRGBA(renderer, x1, yy0, yy0+dy, r, g, b, a)); } else { return (pixelRGBA(renderer, x1, y1, r, g, b, a)); } } } else if (dy == 0) { /* * Horizontal line */ if (draw_endpoint) { return (hlineRGBA(renderer, x1, x2, y1, r, g, b, a)); } else { if (dx>0) { return (hlineRGBA(renderer, xx0, xx0+dx, y1, r, g, b, a)); } else { return (pixelRGBA(renderer, x1, y1, r, g, b, a)); } } } else if ((dx == dy) && (draw_endpoint)) { /* * Diagonal line (with endpoint) */ return (lineRGBA(renderer, x1, y1, x2, y2, r, g, b, a)); } /* * Adjust for negative dx and set xdir */ if (dx >= 0) { xdir = 1; } else { xdir = -1; dx = (-dx); } /* * Line is not horizontal, vertical or diagonal (with endpoint) */ result = 0; /* * Zero accumulator */ erracc = 0; /* * # of bits by which to shift erracc to get intensity level */ intshift = 32 - AAbits; /* * Mask used to flip all bits in an intensity weighting */ wgtcompmask = AAlevels - 1; /* * Draw the initial pixel in the foreground color */ result |= pixelRGBA(renderer, x1, y1, r, g, b, a); /* * x-major or y-major? */ if (dy > dx) { /* * y-major. Calculate 16-bit fixed point fractional part of a pixel that * X advances every time Y advances 1 pixel, truncating the result so that * we won't overrun the endpoint along the X axis */ /* * Not-so-portable version: erradj = ((Uint64)dx << 32) / (Uint64)dy; */ erradj = ((dx << 16) / dy) << 16; /* * draw all pixels other than the first and last */ x0pxdir = xx0 + xdir; while (--dy) { erracctmp = erracc; erracc += erradj; if (erracc <= erracctmp) { /* * rollover in error accumulator, x coord advances */ xx0 = x0pxdir; x0pxdir += xdir; } yy0++; /* y-major so always advance Y */ /* * the AAbits most significant bits of erracc give us the intensity * weighting for this pixel, and the complement of the weighting for * the paired pixel. */ wgt = (erracc >> intshift) & 255; result |= pixelRGBAWeight (renderer, xx0, yy0, r, g, b, a, 255 - wgt); result |= pixelRGBAWeight (renderer, x0pxdir, yy0, r, g, b, a, wgt); } } else { /* * x-major line. Calculate 16-bit fixed-point fractional part of a pixel * that Y advances each time X advances 1 pixel, truncating the result so * that we won't overrun the endpoint along the X axis. */ /* * Not-so-portable version: erradj = ((Uint64)dy << 32) / (Uint64)dx; */ erradj = ((dy << 16) / dx) << 16; /* * draw all pixels other than the first and last */ y0p1 = yy0 + 1; while (--dx) { erracctmp = erracc; erracc += erradj; if (erracc <= erracctmp) { /* * Accumulator turned over, advance y */ yy0 = y0p1; y0p1++; } xx0 += xdir; /* x-major so always advance X */ /* * the AAbits most significant bits of erracc give us the intensity * weighting for this pixel, and the complement of the weighting for * the paired pixel. */ wgt = (erracc >> intshift) & 255; result |= pixelRGBAWeight (renderer, xx0, yy0, r, g, b, a, 255 - wgt); result |= pixelRGBAWeight (renderer, xx0, y0p1, r, g, b, a, wgt); } } /* * Do we have to draw the endpoint */ if (draw_endpoint) { /* * Draw final pixel, always exactly intersected by the line and doesn't * need to be weighted. */ result |= pixelRGBA (renderer, x2, y2, r, g, b, a); } return (result); } /*! \brief Draw anti-aliased line with alpha blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the aa-line. \param y1 Y coordinate of the first point of the aa-line. \param x2 X coordinate of the second point of the aa-line. \param y2 Y coordinate of the second point of the aa-line. \param color The color value of the aa-line to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int aalineColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint32 color) { Uint8 *c = (Uint8 *)&color; return _aalineRGBA(renderer, x1, y1, x2, y2, c[0], c[1], c[2], c[3], 1); } /*! \brief Draw anti-aliased line with alpha blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the aa-line. \param y1 Y coordinate of the first point of the aa-line. \param x2 X coordinate of the second point of the aa-line. \param y2 Y coordinate of the second point of the aa-line. \param r The red value of the aa-line to draw. \param g The green value of the aa-line to draw. \param b The blue value of the aa-line to draw. \param a The alpha value of the aa-line to draw. \returns Returns 0 on success, -1 on failure. */ int aalineRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { return _aalineRGBA(renderer, x1, y1, x2, y2, r, g, b, a, 1); } /* ----- Circle */ /*! \brief Draw circle with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the circle. \param y Y coordinate of the center of the circle. \param rad Radius in pixels of the circle. \param color The color value of the circle to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int circleColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Uint32 color) { Uint8 *c = (Uint8 *)&color; return ellipseRGBA(renderer, x, y, rad, rad, c[0], c[1], c[2], c[3]); } /*! \brief Draw circle with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the circle. \param y Y coordinate of the center of the circle. \param rad Radius in pixels of the circle. \param r The red value of the circle to draw. \param g The green value of the circle to draw. \param b The blue value of the circle to draw. \param a The alpha value of the circle to draw. \returns Returns 0 on success, -1 on failure. */ int circleRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { return ellipseRGBA(renderer, x, y, rad, rad, r, g, b, a); } /* ----- Arc */ /*! \brief Arc with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the arc. \param y Y coordinate of the center of the arc. \param rad Radius in pixels of the arc. \param start Starting radius in degrees of the arc. 0 degrees is down, increasing counterclockwise. \param end Ending radius in degrees of the arc. 0 degrees is down, increasing counterclockwise. \param color The color value of the arc to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int arcColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint32 color) { Uint8 *c = (Uint8 *)&color; return arcRGBA(renderer, x, y, rad, start, end, c[0], c[1], c[2], c[3]); } /*! \brief Arc with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the arc. \param y Y coordinate of the center of the arc. \param rad Radius in pixels of the arc. \param start Starting radius in degrees of the arc. 0 degrees is down, increasing counterclockwise. \param end Ending radius in degrees of the arc. 0 degrees is down, increasing counterclockwise. \param r The red value of the arc to draw. \param g The green value of the arc to draw. \param b The blue value of the arc to draw. \param a The alpha value of the arc to draw. \returns Returns 0 on success, -1 on failure. */ int arcRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; Sint16 cx = 0; Sint16 cy = rad; Sint16 df = 1 - rad; Sint16 d_e = 3; Sint16 d_se = -2 * rad + 5; Sint16 xpcx, xmcx, xpcy, xmcy; Sint16 ypcy, ymcy, ypcx, ymcx; Uint8 drawoct; int startoct, endoct, oct, stopval_start = 0, stopval_end = 0; double dstart, dend, temp = 0.; /* * Sanity check radius */ if (rad < 0) { return (-1); } /* * Special case for rad=0 - draw a point */ if (rad == 0) { return (pixelRGBA(renderer, x, y, r, g, b, a)); } // Octant labelling // // \ 5 | 6 / // \ | / // 4 \ | / 7 // \|/ //------+------ +x // /|\ // 3 / | \ 0 // / | \ // / 2 | 1 \ // +y // Initially reset bitmask to 0x00000000 // the set whether or not to keep drawing a given octant. // For example: 0x00111100 means we're drawing in octants 2-5 drawoct = 0; /* * Fixup angles */ start %= 360; end %= 360; // 0 <= start & end < 360; note that sometimes start > end - if so, arc goes back through 0. while (start < 0) start += 360; while (end < 0) end += 360; start %= 360; end %= 360; // now, we find which octants we're drawing in. startoct = start / 45; endoct = end / 45; oct = startoct - 1; // we increment as first step in loop // stopval_start, stopval_end; // what values of cx to stop at. do { oct = (oct + 1) % 8; if (oct == startoct) { // need to compute stopval_start for this octant. Look at picture above if this is unclear dstart = (double)start; switch (oct) { case 0: case 3: temp = sin(dstart * M_PI / 180.); break; case 1: case 6: temp = cos(dstart * M_PI / 180.); break; case 2: case 5: temp = -cos(dstart * M_PI / 180.); break; case 4: case 7: temp = -sin(dstart * M_PI / 180.); break; } temp *= rad; stopval_start = (int)temp; // always round down. // This isn't arbitrary, but requires graph paper to explain well. // The basic idea is that we're always changing drawoct after we draw, so we // stop immediately after we render the last sensible pixel at x = ((int)temp). // and whether to draw in this octant initially if (oct % 2) drawoct |= (1 << oct); // this is basically like saying drawoct[oct] = true, if drawoct were a bool array else drawoct &= 255 - (1 << oct); // this is basically like saying drawoct[oct] = false } if (oct == endoct) { // need to compute stopval_end for this octant dend = (double)end; switch (oct) { case 0: case 3: temp = sin(dend * M_PI / 180); break; case 1: case 6: temp = cos(dend * M_PI / 180); break; case 2: case 5: temp = -cos(dend * M_PI / 180); break; case 4: case 7: temp = -sin(dend * M_PI / 180); break; } temp *= rad; stopval_end = (int)temp; // and whether to draw in this octant initially if (startoct == endoct) { // note: we start drawing, stop, then start again in this case // otherwise: we only draw in this octant, so initialize it to false, it will get set back to true if (start > end) { // unfortunately, if we're in the same octant and need to draw over the whole circle, // we need to set the rest to true, because the while loop will end at the bottom. drawoct = 255; } else { drawoct &= 255 - (1 << oct); } } else if (oct % 2) drawoct &= 255 - (1 << oct); else drawoct |= (1 << oct); } else if (oct != startoct) { // already verified that it's != endoct drawoct |= (1 << oct); // draw this entire segment } } while (oct != endoct); // so now we have what octants to draw and when to draw them. all that's left is the actual raster code. /* * Set color */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); /* * Draw arc */ do { ypcy = y + cy; ymcy = y - cy; if (cx > 0) { xpcx = x + cx; xmcx = x - cx; // always check if we're drawing a certain octant before adding a pixel to that octant. if (drawoct & 4) result |= pixel(renderer, xmcx, ypcy); if (drawoct & 2) result |= pixel(renderer, xpcx, ypcy); if (drawoct & 32) result |= pixel(renderer, xmcx, ymcy); if (drawoct & 64) result |= pixel(renderer, xpcx, ymcy); } else { if (drawoct & 96) result |= pixel(renderer, x, ymcy); if (drawoct & 6) result |= pixel(renderer, x, ypcy); } xpcy = x + cy; xmcy = x - cy; if (cx > 0 && cx != cy) { ypcx = y + cx; ymcx = y - cx; if (drawoct & 8) result |= pixel(renderer, xmcy, ypcx); if (drawoct & 1) result |= pixel(renderer, xpcy, ypcx); if (drawoct & 16) result |= pixel(renderer, xmcy, ymcx); if (drawoct & 128) result |= pixel(renderer, xpcy, ymcx); } else if (cx == 0) { if (drawoct & 24) result |= pixel(renderer, xmcy, y); if (drawoct & 129) result |= pixel(renderer, xpcy, y); } /* * Update whether we're drawing an octant */ if (stopval_start == cx) { // works like an on-off switch. // This is just in case start & end are in the same octant. if (drawoct & (1 << startoct)) drawoct &= 255 - (1 << startoct); else drawoct |= (1 << startoct); } if (stopval_end == cx) { if (drawoct & (1 << endoct)) drawoct &= 255 - (1 << endoct); else drawoct |= (1 << endoct); } /* * Update pixels */ if (df < 0) { df += d_e; d_e += 2; d_se += 2; } else { df += d_se; d_e += 2; d_se += 4; cy--; } cx++; } while (cx <= cy); return (result); } /* ----- AA Circle */ /*! \brief Draw anti-aliased circle with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the aa-circle. \param y Y coordinate of the center of the aa-circle. \param rad Radius in pixels of the aa-circle. \param color The color value of the aa-circle to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int aacircleColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Uint32 color) { Uint8 *c = (Uint8 *)&color; return aaellipseRGBA(renderer, x, y, rad, rad, c[0], c[1], c[2], c[3]); } /*! \brief Draw anti-aliased circle with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the aa-circle. \param y Y coordinate of the center of the aa-circle. \param rad Radius in pixels of the aa-circle. \param r The red value of the aa-circle to draw. \param g The green value of the aa-circle to draw. \param b The blue value of the aa-circle to draw. \param a The alpha value of the aa-circle to draw. \returns Returns 0 on success, -1 on failure. */ int aacircleRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { /* * Draw */ return aaellipseRGBA(renderer, x, y, rad, rad, r, g, b, a); } /* ----- Filled Circle */ /*! \brief Draw filled circle with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the filled circle. \param y Y coordinate of the center of the filled circle. \param rad Radius in pixels of the filled circle. \param color The color value of the filled circle to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int filledCircleColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Uint32 color) { Uint8 *c = (Uint8 *)&color; return filledEllipseRGBA(renderer, x, y, rad, rad, c[0], c[1], c[2], c[3]); } /*! \brief Draw filled circle with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the filled circle. \param y Y coordinate of the center of the filled circle. \param rad Radius in pixels of the filled circle. \param r The red value of the filled circle to draw. \param g The green value of the filled circle to draw. \param b The blue value of the filled circle to draw. \param a The alpha value of the filled circle to draw. \returns Returns 0 on success, -1 on failure. */ int filledCircleRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; Sint16 cx = 0; Sint16 cy = rad; Sint16 ocx = (Sint16) 0xffff; Sint16 ocy = (Sint16) 0xffff; Sint16 df = 1 - rad; Sint16 d_e = 3; Sint16 d_se = -2 * rad + 5; Sint16 xpcx, xmcx, xpcy, xmcy; Sint16 ypcy, ymcy, ypcx, ymcx; /* * Sanity check radius */ if (rad < 0) { return (-1); } /* * Special case for rad=0 - draw a point */ if (rad == 0) { return (pixelRGBA(renderer, x, y, r, g, b, a)); } /* * Set color */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); /* * Draw */ do { xpcx = x + cx; xmcx = x - cx; xpcy = x + cy; xmcy = x - cy; if (ocy != cy) { if (cy > 0) { ypcy = y + cy; ymcy = y - cy; result |= hline(renderer, xmcx, xpcx, ypcy); result |= hline(renderer, xmcx, xpcx, ymcy); } else { result |= hline(renderer, xmcx, xpcx, y); } ocy = cy; } if (ocx != cx) { if (cx != cy) { if (cx > 0) { ypcx = y + cx; ymcx = y - cx; result |= hline(renderer, xmcy, xpcy, ymcx); result |= hline(renderer, xmcy, xpcy, ypcx); } else { result |= hline(renderer, xmcy, xpcy, y); } } ocx = cx; } /* * Update */ if (df < 0) { df += d_e; d_e += 2; d_se += 2; } else { df += d_se; d_e += 2; d_se += 4; cy--; } cx++; } while (cx <= cy); return (result); } /* ----- Ellipse */ /*! \brief Draw ellipse with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the ellipse. \param y Y coordinate of the center of the ellipse. \param rx Horizontal radius in pixels of the ellipse. \param ry Vertical radius in pixels of the ellipse. \param color The color value of the ellipse to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int ellipseColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rx, Sint16 ry, Uint32 color) { Uint8 *c = (Uint8 *)&color; return ellipseRGBA(renderer, x, y, rx, ry, c[0], c[1], c[2], c[3]); } /*! \brief Draw ellipse with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the ellipse. \param y Y coordinate of the center of the ellipse. \param rx Horizontal radius in pixels of the ellipse. \param ry Vertical radius in pixels of the ellipse. \param r The red value of the ellipse to draw. \param g The green value of the ellipse to draw. \param b The blue value of the ellipse to draw. \param a The alpha value of the ellipse to draw. \returns Returns 0 on success, -1 on failure. */ int ellipseRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rx, Sint16 ry, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; int ix, iy; int h, i, j, k; int oh, oi, oj, ok; int xmh, xph, ypk, ymk; int xmi, xpi, ymj, ypj; int xmj, xpj, ymi, ypi; int xmk, xpk, ymh, yph; /* * Sanity check radii */ if ((rx < 0) || (ry < 0)) { return (-1); } /* * Special case for rx=0 - draw a vline */ if (rx == 0) { return (vlineRGBA(renderer, x, y - ry, y + ry, r, g, b, a)); } /* * Special case for ry=0 - draw a hline */ if (ry == 0) { return (hlineRGBA(renderer, x - rx, x + rx, y, r, g, b, a)); } /* * Set color */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); /* * Init vars */ oh = oi = oj = ok = 0xFFFF; /* * Draw */ if (rx > ry) { ix = 0; iy = rx * 64; do { h = (ix + 32) >> 6; i = (iy + 32) >> 6; j = (h * ry) / rx; k = (i * ry) / rx; if (((ok != k) && (oj != k)) || ((oj != j) && (ok != j)) || (k != j)) { xph = x + h; xmh = x - h; if (k > 0) { ypk = y + k; ymk = y - k; result |= pixel(renderer, xmh, ypk); result |= pixel(renderer, xph, ypk); result |= pixel(renderer, xmh, ymk); result |= pixel(renderer, xph, ymk); } else { result |= pixel(renderer, xmh, y); result |= pixel(renderer, xph, y); } ok = k; xpi = x + i; xmi = x - i; if (j > 0) { ypj = y + j; ymj = y - j; result |= pixel(renderer, xmi, ypj); result |= pixel(renderer, xpi, ypj); result |= pixel(renderer, xmi, ymj); result |= pixel(renderer, xpi, ymj); } else { result |= pixel(renderer, xmi, y); result |= pixel(renderer, xpi, y); } oj = j; } ix = ix + iy / rx; iy = iy - ix / rx; } while (i > h); } else { ix = 0; iy = ry * 64; do { h = (ix + 32) >> 6; i = (iy + 32) >> 6; j = (h * rx) / ry; k = (i * rx) / ry; if (((oi != i) && (oh != i)) || ((oh != h) && (oi != h) && (i != h))) { xmj = x - j; xpj = x + j; if (i > 0) { ypi = y + i; ymi = y - i; result |= pixel(renderer, xmj, ypi); result |= pixel(renderer, xpj, ypi); result |= pixel(renderer, xmj, ymi); result |= pixel(renderer, xpj, ymi); } else { result |= pixel(renderer, xmj, y); result |= pixel(renderer, xpj, y); } oi = i; xmk = x - k; xpk = x + k; if (h > 0) { yph = y + h; ymh = y - h; result |= pixel(renderer, xmk, yph); result |= pixel(renderer, xpk, yph); result |= pixel(renderer, xmk, ymh); result |= pixel(renderer, xpk, ymh); } else { result |= pixel(renderer, xmk, y); result |= pixel(renderer, xpk, y); } oh = h; } ix = ix + iy / ry; iy = iy - ix / ry; } while (i > h); } return (result); } /* ----- AA Ellipse */ /* Windows targets do not have lrint, so provide a local inline version */ #if defined(_MSC_VER) /* Detect 64bit and use intrinsic version */ #ifdef _M_X64 #include static __inline long lrint(float f) { return _mm_cvtss_si32(_mm_load_ss(&f)); } #elif defined(_M_IX86) __inline long int lrint (double flt) { int intgr; _asm { fld flt fistp intgr }; return intgr; } #elif defined(_M_ARM) #include #pragma warning(push) #pragma warning(disable: 4716) __declspec(naked) long int lrint (double flt) { __emit(0xEC410B10); // fmdrr d0, r0, r1 __emit(0xEEBD0B40); // ftosid s0, d0 __emit(0xEE100A10); // fmrs r0, s0 __emit(0xE12FFF1E); // bx lr } #pragma warning(pop) #else #error lrint needed for MSVC on non X86/AMD64/ARM targets. #endif #endif /*! \brief Draw anti-aliased ellipse with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the aa-ellipse. \param y Y coordinate of the center of the aa-ellipse. \param rx Horizontal radius in pixels of the aa-ellipse. \param ry Vertical radius in pixels of the aa-ellipse. \param color The color value of the aa-ellipse to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int aaellipseColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rx, Sint16 ry, Uint32 color) { Uint8 *c = (Uint8 *)&color; return aaellipseRGBA(renderer, x, y, rx, ry, c[0], c[1], c[2], c[3]); } /*! \brief Draw anti-aliased ellipse with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the aa-ellipse. \param y Y coordinate of the center of the aa-ellipse. \param rx Horizontal radius in pixels of the aa-ellipse. \param ry Vertical radius in pixels of the aa-ellipse. \param r The red value of the aa-ellipse to draw. \param g The green value of the aa-ellipse to draw. \param b The blue value of the aa-ellipse to draw. \param a The alpha value of the aa-ellipse to draw. \returns Returns 0 on success, -1 on failure. */ int aaellipseRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rx, Sint16 ry, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; int i; int a2, b2, ds, dt, dxt, t, s, d; Sint16 xp, yp, xs, ys, dyt, od, xx, yy, xc2, yc2; float cp; double sab; Uint8 weight, iweight; /* * Sanity check radii */ if ((rx < 0) || (ry < 0)) { return (-1); } /* * Special case for rx=0 - draw a vline */ if (rx == 0) { return (vlineRGBA(renderer, x, y - ry, y + ry, r, g, b, a)); } /* * Special case for ry=0 - draw an hline */ if (ry == 0) { return (hlineRGBA(renderer, x - rx, x + rx, y, r, g, b, a)); } /* Variable setup */ a2 = rx * rx; b2 = ry * ry; ds = 2 * a2; dt = 2 * b2; xc2 = 2 * x; yc2 = 2 * y; sab = sqrt((double)(a2 + b2)); od = (Sint16)lrint(sab*0.01) + 1; /* introduce some overdraw */ dxt = (Sint16)lrint((double)a2 / sab) + od; t = 0; s = -2 * a2 * ry; d = 0; xp = x; yp = y - ry; /* Draw */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); /* "End points" */ result |= pixelRGBA(renderer, xp, yp, r, g, b, a); result |= pixelRGBA(renderer, xc2 - xp, yp, r, g, b, a); result |= pixelRGBA(renderer, xp, yc2 - yp, r, g, b, a); result |= pixelRGBA(renderer, xc2 - xp, yc2 - yp, r, g, b, a); for (i = 1; i <= dxt; i++) { xp--; d += t - b2; if (d >= 0) ys = yp - 1; else if ((d - s - a2) > 0) { if ((2 * d - s - a2) >= 0) ys = yp + 1; else { ys = yp; yp++; d -= s + a2; s += ds; } } else { yp++; ys = yp + 1; d -= s + a2; s += ds; } t -= dt; /* Calculate alpha */ if (s != 0) { cp = (float) abs(d) / (float) abs(s); if (cp > 1.0) { cp = 1.0; } } else { cp = 1.0; } /* Calculate weights */ weight = (Uint8) (cp * 255); iweight = 255 - weight; /* Upper half */ xx = xc2 - xp; result |= pixelRGBAWeight(renderer, xp, yp, r, g, b, a, iweight); result |= pixelRGBAWeight(renderer, xx, yp, r, g, b, a, iweight); result |= pixelRGBAWeight(renderer, xp, ys, r, g, b, a, weight); result |= pixelRGBAWeight(renderer, xx, ys, r, g, b, a, weight); /* Lower half */ yy = yc2 - yp; result |= pixelRGBAWeight(renderer, xp, yy, r, g, b, a, iweight); result |= pixelRGBAWeight(renderer, xx, yy, r, g, b, a, iweight); yy = yc2 - ys; result |= pixelRGBAWeight(renderer, xp, yy, r, g, b, a, weight); result |= pixelRGBAWeight(renderer, xx, yy, r, g, b, a, weight); } /* Replaces original approximation code dyt = abs(yp - yc); */ dyt = (Sint16)lrint((double)b2 / sab ) + od; for (i = 1; i <= dyt; i++) { yp++; d -= s + a2; if (d <= 0) xs = xp + 1; else if ((d + t - b2) < 0) { if ((2 * d + t - b2) <= 0) xs = xp - 1; else { xs = xp; xp--; d += t - b2; t -= dt; } } else { xp--; xs = xp - 1; d += t - b2; t -= dt; } s += ds; /* Calculate alpha */ if (t != 0) { cp = (float) abs(d) / (float) abs(t); if (cp > 1.0) { cp = 1.0; } } else { cp = 1.0; } /* Calculate weight */ weight = (Uint8) (cp * 255); iweight = 255 - weight; /* Left half */ xx = xc2 - xp; yy = yc2 - yp; result |= pixelRGBAWeight(renderer, xp, yp, r, g, b, a, iweight); result |= pixelRGBAWeight(renderer, xx, yp, r, g, b, a, iweight); result |= pixelRGBAWeight(renderer, xp, yy, r, g, b, a, iweight); result |= pixelRGBAWeight(renderer, xx, yy, r, g, b, a, iweight); /* Right half */ xx = xc2 - xs; result |= pixelRGBAWeight(renderer, xs, yp, r, g, b, a, weight); result |= pixelRGBAWeight(renderer, xx, yp, r, g, b, a, weight); result |= pixelRGBAWeight(renderer, xs, yy, r, g, b, a, weight); result |= pixelRGBAWeight(renderer, xx, yy, r, g, b, a, weight); } return (result); } /* ---- Filled Ellipse */ /*! \brief Draw filled ellipse with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the filled ellipse. \param y Y coordinate of the center of the filled ellipse. \param rx Horizontal radius in pixels of the filled ellipse. \param ry Vertical radius in pixels of the filled ellipse. \param color The color value of the filled ellipse to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int filledEllipseColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rx, Sint16 ry, Uint32 color) { Uint8 *c = (Uint8 *)&color; return filledEllipseRGBA(renderer, x, y, rx, ry, c[0], c[1], c[2], c[3]); } /*! \brief Draw filled ellipse with blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the filled ellipse. \param y Y coordinate of the center of the filled ellipse. \param rx Horizontal radius in pixels of the filled ellipse. \param ry Vertical radius in pixels of the filled ellipse. \param r The red value of the filled ellipse to draw. \param g The green value of the filled ellipse to draw. \param b The blue value of the filled ellipse to draw. \param a The alpha value of the filled ellipse to draw. \returns Returns 0 on success, -1 on failure. */ int filledEllipseRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rx, Sint16 ry, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; int ix, iy; int h, i, j, k; int oh, oi, oj, ok; int xmh, xph; int xmi, xpi; int xmj, xpj; int xmk, xpk; /* * Sanity check radii */ if ((rx < 0) || (ry < 0)) { return (-1); } /* * Special case for rx=0 - draw a vline */ if (rx == 0) { return (vlineRGBA(renderer, x, y - ry, y + ry, r, g, b, a)); } /* * Special case for ry=0 - draw a hline */ if (ry == 0) { return (hlineRGBA(renderer, x - rx, x + rx, y, r, g, b, a)); } /* * Set color */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); /* * Init vars */ oh = oi = oj = ok = 0xFFFF; /* * Draw */ if (rx > ry) { ix = 0; iy = rx * 64; do { h = (ix + 32) >> 6; i = (iy + 32) >> 6; j = (h * ry) / rx; k = (i * ry) / rx; if ((ok != k) && (oj != k)) { xph = x + h; xmh = x - h; if (k > 0) { result |= hline(renderer, xmh, xph, y + k); result |= hline(renderer, xmh, xph, y - k); } else { result |= hline(renderer, xmh, xph, y); } ok = k; } if ((oj != j) && (ok != j) && (k != j)) { xmi = x - i; xpi = x + i; if (j > 0) { result |= hline(renderer, xmi, xpi, y + j); result |= hline(renderer, xmi, xpi, y - j); } else { result |= hline(renderer, xmi, xpi, y); } oj = j; } ix = ix + iy / rx; iy = iy - ix / rx; } while (i > h); } else { ix = 0; iy = ry * 64; do { h = (ix + 32) >> 6; i = (iy + 32) >> 6; j = (h * rx) / ry; k = (i * rx) / ry; if ((oi != i) && (oh != i)) { xmj = x - j; xpj = x + j; if (i > 0) { result |= hline(renderer, xmj, xpj, y + i); result |= hline(renderer, xmj, xpj, y - i); } else { result |= hline(renderer, xmj, xpj, y); } oi = i; } if ((oh != h) && (oi != h) && (i != h)) { xmk = x - k; xpk = x + k; if (h > 0) { result |= hline(renderer, xmk, xpk, y + h); result |= hline(renderer, xmk, xpk, y - h); } else { result |= hline(renderer, xmk, xpk, y); } oh = h; } ix = ix + iy / ry; iy = iy - ix / ry; } while (i > h); } return (result); } /* ----- Pie */ /*! \brief Internal float (low-speed) pie-calc implementation by drawing polygons. Note: Determines vertex array and uses polygon or filledPolygon drawing routines to render. \param renderer The renderer to draw on. \param x X coordinate of the center of the pie. \param y Y coordinate of the center of the pie. \param rad Radius in pixels of the pie. \param start Starting radius in degrees of the pie. \param end Ending radius in degrees of the pie. \param color The color value of the pie to draw (0xRRGGBBAA). \param filled Flag indicating if the pie should be filled (=1) or not (=0). \returns Returns 0 on success, -1 on failure. */ int _pieRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint8 r, Uint8 g, Uint8 b, Uint8 a, Uint8 filled) { int result; double angle, start_angle, end_angle; double deltaAngle; double dr; int numpoints, i; Sint16 *vx, *vy; /* * Sanity check radii */ if (rad < 0) { return (-1); } /* * Fixup angles */ start = start % 360; end = end % 360; /* * Special case for rad=0 - draw a point */ if (rad == 0) { return (pixelRGBA(renderer, x, y, r, g, b, a)); } /* * Variable setup */ dr = (double) rad; deltaAngle = 3.0 / dr; start_angle = (double) start *(2.0 * M_PI / 360.0); end_angle = (double) end *(2.0 * M_PI / 360.0); if (start > end) { end_angle += (2.0 * M_PI); } /* We will always have at least 2 points */ numpoints = 2; /* Count points (rather than calculating it) */ angle = start_angle; while (angle < end_angle) { angle += deltaAngle; numpoints++; } /* Allocate combined vertex array */ vx = vy = (Sint16 *) malloc(2 * sizeof(Uint16) * numpoints); if (vx == NULL) { return (-1); } /* Update point to start of vy */ vy += numpoints; /* Center */ vx[0] = x; vy[0] = y; /* First vertex */ angle = start_angle; vx[1] = x + (int) (dr * cos(angle)); vy[1] = y + (int) (dr * sin(angle)); if (numpoints<3) { result = lineRGBA(renderer, vx[0], vy[0], vx[1], vy[1], r, g, b, a); } else { /* Calculate other vertices */ i = 2; angle = start_angle; while (angle < end_angle) { angle += deltaAngle; if (angle>end_angle) { angle = end_angle; } vx[i] = x + (int) (dr * cos(angle)); vy[i] = y + (int) (dr * sin(angle)); i++; } /* Draw */ if (filled) { result = filledPolygonRGBA(renderer, vx, vy, numpoints, r, g, b, a); } else { result = polygonRGBA(renderer, vx, vy, numpoints, r, g, b, a); } } /* Free combined vertex array */ free(vx); return (result); } /*! \brief Draw pie (outline) with alpha blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the pie. \param y Y coordinate of the center of the pie. \param rad Radius in pixels of the pie. \param start Starting radius in degrees of the pie. \param end Ending radius in degrees of the pie. \param color The color value of the pie to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int pieColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint32 color) { Uint8 *c = (Uint8 *)&color; return _pieRGBA(renderer, x, y, rad, start, end, c[0], c[1], c[2], c[3], 0); } /*! \brief Draw pie (outline) with alpha blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the pie. \param y Y coordinate of the center of the pie. \param rad Radius in pixels of the pie. \param start Starting radius in degrees of the pie. \param end Ending radius in degrees of the pie. \param r The red value of the pie to draw. \param g The green value of the pie to draw. \param b The blue value of the pie to draw. \param a The alpha value of the pie to draw. \returns Returns 0 on success, -1 on failure. */ int pieRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { return _pieRGBA(renderer, x, y, rad, start, end, r, g, b, a, 0); } /*! \brief Draw filled pie with alpha blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the filled pie. \param y Y coordinate of the center of the filled pie. \param rad Radius in pixels of the filled pie. \param start Starting radius in degrees of the filled pie. \param end Ending radius in degrees of the filled pie. \param color The color value of the filled pie to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int filledPieColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint32 color) { Uint8 *c = (Uint8 *)&color; return _pieRGBA(renderer, x, y, rad, start, end, c[0], c[1], c[2], c[3], 1); } /*! \brief Draw filled pie with alpha blending. \param renderer The renderer to draw on. \param x X coordinate of the center of the filled pie. \param y Y coordinate of the center of the filled pie. \param rad Radius in pixels of the filled pie. \param start Starting radius in degrees of the filled pie. \param end Ending radius in degrees of the filled pie. \param r The red value of the filled pie to draw. \param g The green value of the filled pie to draw. \param b The blue value of the filled pie to draw. \param a The alpha value of the filled pie to draw. \returns Returns 0 on success, -1 on failure. */ int filledPieRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, Sint16 rad, Sint16 start, Sint16 end, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { return _pieRGBA(renderer, x, y, rad, start, end, r, g, b, a, 1); } /* ------ Trigon */ /*! \brief Draw trigon (triangle outline) with alpha blending. Note: Creates vertex array and uses polygon routine to render. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the trigon. \param y1 Y coordinate of the first point of the trigon. \param x2 X coordinate of the second point of the trigon. \param y2 Y coordinate of the second point of the trigon. \param x3 X coordinate of the third point of the trigon. \param y3 Y coordinate of the third point of the trigon. \param color The color value of the trigon to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int trigonColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 x3, Sint16 y3, Uint32 color) { Sint16 vx[3]; Sint16 vy[3]; vx[0]=x1; vx[1]=x2; vx[2]=x3; vy[0]=y1; vy[1]=y2; vy[2]=y3; return(polygonColor(renderer,vx,vy,3,color)); } /*! \brief Draw trigon (triangle outline) with alpha blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the trigon. \param y1 Y coordinate of the first point of the trigon. \param x2 X coordinate of the second point of the trigon. \param y2 Y coordinate of the second point of the trigon. \param x3 X coordinate of the third point of the trigon. \param y3 Y coordinate of the third point of the trigon. \param r The red value of the trigon to draw. \param g The green value of the trigon to draw. \param b The blue value of the trigon to draw. \param a The alpha value of the trigon to draw. \returns Returns 0 on success, -1 on failure. */ int trigonRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 x3, Sint16 y3, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { Sint16 vx[3]; Sint16 vy[3]; vx[0]=x1; vx[1]=x2; vx[2]=x3; vy[0]=y1; vy[1]=y2; vy[2]=y3; return(polygonRGBA(renderer,vx,vy,3,r,g,b,a)); } /* ------ AA-Trigon */ /*! \brief Draw anti-aliased trigon (triangle outline) with alpha blending. Note: Creates vertex array and uses aapolygon routine to render. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the aa-trigon. \param y1 Y coordinate of the first point of the aa-trigon. \param x2 X coordinate of the second point of the aa-trigon. \param y2 Y coordinate of the second point of the aa-trigon. \param x3 X coordinate of the third point of the aa-trigon. \param y3 Y coordinate of the third point of the aa-trigon. \param color The color value of the aa-trigon to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int aatrigonColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 x3, Sint16 y3, Uint32 color) { Sint16 vx[3]; Sint16 vy[3]; vx[0]=x1; vx[1]=x2; vx[2]=x3; vy[0]=y1; vy[1]=y2; vy[2]=y3; return(aapolygonColor(renderer,vx,vy,3,color)); } /*! \brief Draw anti-aliased trigon (triangle outline) with alpha blending. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the aa-trigon. \param y1 Y coordinate of the first point of the aa-trigon. \param x2 X coordinate of the second point of the aa-trigon. \param y2 Y coordinate of the second point of the aa-trigon. \param x3 X coordinate of the third point of the aa-trigon. \param y3 Y coordinate of the third point of the aa-trigon. \param r The red value of the aa-trigon to draw. \param g The green value of the aa-trigon to draw. \param b The blue value of the aa-trigon to draw. \param a The alpha value of the aa-trigon to draw. \returns Returns 0 on success, -1 on failure. */ int aatrigonRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 x3, Sint16 y3, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { Sint16 vx[3]; Sint16 vy[3]; vx[0]=x1; vx[1]=x2; vx[2]=x3; vy[0]=y1; vy[1]=y2; vy[2]=y3; return(aapolygonRGBA(renderer,vx,vy,3,r,g,b,a)); } /* ------ Filled Trigon */ /*! \brief Draw filled trigon (triangle) with alpha blending. Note: Creates vertex array and uses aapolygon routine to render. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the filled trigon. \param y1 Y coordinate of the first point of the filled trigon. \param x2 X coordinate of the second point of the filled trigon. \param y2 Y coordinate of the second point of the filled trigon. \param x3 X coordinate of the third point of the filled trigon. \param y3 Y coordinate of the third point of the filled trigon. \param color The color value of the filled trigon to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int filledTrigonColor(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 x3, Sint16 y3, Uint32 color) { Sint16 vx[3]; Sint16 vy[3]; vx[0]=x1; vx[1]=x2; vx[2]=x3; vy[0]=y1; vy[1]=y2; vy[2]=y3; return(filledPolygonColor(renderer,vx,vy,3,color)); } /*! \brief Draw filled trigon (triangle) with alpha blending. Note: Creates vertex array and uses aapolygon routine to render. \param renderer The renderer to draw on. \param x1 X coordinate of the first point of the filled trigon. \param y1 Y coordinate of the first point of the filled trigon. \param x2 X coordinate of the second point of the filled trigon. \param y2 Y coordinate of the second point of the filled trigon. \param x3 X coordinate of the third point of the filled trigon. \param y3 Y coordinate of the third point of the filled trigon. \param r The red value of the filled trigon to draw. \param g The green value of the filled trigon to draw. \param b The blue value of the filled trigon to draw. \param a The alpha value of the filled trigon to draw. \returns Returns 0 on success, -1 on failure. */ int filledTrigonRGBA(SDL_Renderer * renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Sint16 x3, Sint16 y3, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { Sint16 vx[3]; Sint16 vy[3]; vx[0]=x1; vx[1]=x2; vx[2]=x3; vy[0]=y1; vy[1]=y2; vy[2]=y3; return(filledPolygonRGBA(renderer,vx,vy,3,r,g,b,a)); } /* ---- Polygon */ /*! \brief Draw polygon with alpha blending. \param renderer The renderer to draw on. \param vx Vertex array containing X coordinates of the points of the polygon. \param vy Vertex array containing Y coordinates of the points of the polygon. \param n Number of points in the vertex array. Minimum number is 3. \param color The color value of the polygon to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int polygonColor(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n, Uint32 color) { Uint8 *c = (Uint8 *)&color; return polygonRGBA(renderer, vx, vy, n, c[0], c[1], c[2], c[3]); } /*! \brief Draw polygon with the currently set color and blend mode. \param renderer The renderer to draw on. \param vx Vertex array containing X coordinates of the points of the polygon. \param vy Vertex array containing Y coordinates of the points of the polygon. \param n Number of points in the vertex array. Minimum number is 3. \param r The red value of the polygon to draw. \param g The green value of the polygon to draw. \param b The blue value of the polygon to draw. \param a The alpha value of the polygon to draw. \returns Returns 0 on success, -1 on failure. */ int polygon(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n) { /* * Draw */ int result; int i, nn; SDL_Point* points; /* * Vertex array NULL check */ if (vx == NULL) { return (-1); } if (vy == NULL) { return (-1); } /* * Sanity check */ if (n < 3) { return (-1); } /* * Create array of points */ nn = n + 1; points = (SDL_Point*)malloc(sizeof(SDL_Point) * nn); if (points == NULL) { return -1; } for (i=0; ib. */ int _gfxPrimitivesCompareInt(const void *a, const void *b) { return (*(const int *) a) - (*(const int *) b); } /*! \brief Global vertex array to use if optional parameters are not given in filledPolygonMT calls. Note: Used for non-multithreaded (default) operation of filledPolygonMT. */ static int *gfxPrimitivesPolyIntsGlobal = NULL; /*! \brief Flag indicating if global vertex array was already allocated. Note: Used for non-multithreaded (default) operation of filledPolygonMT. */ static int gfxPrimitivesPolyAllocatedGlobal = 0; /*! \brief Draw filled polygon with alpha blending (multi-threaded capable). Note: The last two parameters are optional; but are required for multithreaded operation. \param dst The surface to draw on. \param vx Vertex array containing X coordinates of the points of the filled polygon. \param vy Vertex array containing Y coordinates of the points of the filled polygon. \param n Number of points in the vertex array. Minimum number is 3. \param r The red value of the filled polygon to draw. \param g The green value of the filled polygon to draw. \param b The blue value of the filled polygon to draw. \param a The alpha value of the filled polygon to draw. \param polyInts Preallocated, temporary vertex array used for sorting vertices. Required for multithreaded operation; set to NULL otherwise. \param polyAllocated Flag indicating if temporary vertex array was allocated. Required for multithreaded operation; set to NULL otherwise. \returns Returns 0 on success, -1 on failure. */ int filledPolygonRGBAMT(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n, Uint8 r, Uint8 g, Uint8 b, Uint8 a, int **polyInts, int *polyAllocated) { int result; int i; int y, xa, xb; int miny, maxy; int x1, y1; int x2, y2; int ind1, ind2; int ints; int *gfxPrimitivesPolyInts = NULL; int *gfxPrimitivesPolyIntsNew = NULL; int gfxPrimitivesPolyAllocated = 0; /* * Vertex array NULL check */ if (vx == NULL) { return (-1); } if (vy == NULL) { return (-1); } /* * Sanity check number of edges */ if (n < 3) { return -1; } /* * Map polygon cache */ if ((polyInts==NULL) || (polyAllocated==NULL)) { /* Use global cache */ gfxPrimitivesPolyInts = gfxPrimitivesPolyIntsGlobal; gfxPrimitivesPolyAllocated = gfxPrimitivesPolyAllocatedGlobal; } else { /* Use local cache */ gfxPrimitivesPolyInts = *polyInts; gfxPrimitivesPolyAllocated = *polyAllocated; } /* * Allocate temp array, only grow array */ if (!gfxPrimitivesPolyAllocated) { gfxPrimitivesPolyInts = (int *) malloc(sizeof(int) * n); gfxPrimitivesPolyAllocated = n; } else { if (gfxPrimitivesPolyAllocated < n) { gfxPrimitivesPolyIntsNew = (int *) realloc(gfxPrimitivesPolyInts, sizeof(int) * n); if (!gfxPrimitivesPolyIntsNew) { if (!gfxPrimitivesPolyInts) { free(gfxPrimitivesPolyInts); gfxPrimitivesPolyInts = NULL; } gfxPrimitivesPolyAllocated = 0; } else { gfxPrimitivesPolyInts = gfxPrimitivesPolyIntsNew; gfxPrimitivesPolyAllocated = n; } } } /* * Check temp array */ if (gfxPrimitivesPolyInts==NULL) { gfxPrimitivesPolyAllocated = 0; } /* * Update cache variables */ if ((polyInts==NULL) || (polyAllocated==NULL)) { gfxPrimitivesPolyIntsGlobal = gfxPrimitivesPolyInts; gfxPrimitivesPolyAllocatedGlobal = gfxPrimitivesPolyAllocated; } else { *polyInts = gfxPrimitivesPolyInts; *polyAllocated = gfxPrimitivesPolyAllocated; } /* * Check temp array again */ if (gfxPrimitivesPolyInts==NULL) { return(-1); } /* * Determine Y maxima */ miny = vy[0]; maxy = vy[0]; for (i = 1; (i < n); i++) { if (vy[i] < miny) { miny = vy[i]; } else if (vy[i] > maxy) { maxy = vy[i]; } } /* * Draw, scanning y */ result = 0; for (y = miny; (y <= maxy); y++) { ints = 0; for (i = 0; (i < n); i++) { if (!i) { ind1 = n - 1; ind2 = 0; } else { ind1 = i - 1; ind2 = i; } y1 = vy[ind1]; y2 = vy[ind2]; if (y1 < y2) { x1 = vx[ind1]; x2 = vx[ind2]; } else if (y1 > y2) { y2 = vy[ind1]; y1 = vy[ind2]; x2 = vx[ind1]; x1 = vx[ind2]; } else { continue; } if ( ((y >= y1) && (y < y2)) || ((y == maxy) && (y > y1) && (y <= y2)) ) { gfxPrimitivesPolyInts[ints++] = ((65536 * (y - y1)) / (y2 - y1)) * (x2 - x1) + (65536 * x1); } } qsort(gfxPrimitivesPolyInts, ints, sizeof(int), _gfxPrimitivesCompareInt); /* * Set color */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); for (i = 0; (i < ints); i += 2) { xa = gfxPrimitivesPolyInts[i] + 1; xa = (xa >> 16) + ((xa & 32768) >> 15); xb = gfxPrimitivesPolyInts[i+1] - 1; xb = (xb >> 16) + ((xb & 32768) >> 15); result |= hline(renderer, xa, xb, y); } } return (result); } /*! \brief Draw filled polygon with alpha blending. \param renderer The renderer to draw on. \param vx Vertex array containing X coordinates of the points of the filled polygon. \param vy Vertex array containing Y coordinates of the points of the filled polygon. \param n Number of points in the vertex array. Minimum number is 3. \param color The color value of the filled polygon to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int filledPolygonColor(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n, Uint32 color) { Uint8 *c = (Uint8 *)&color; return filledPolygonRGBAMT(renderer, vx, vy, n, c[0], c[1], c[2], c[3], NULL, NULL); } /*! \brief Draw filled polygon with alpha blending. \param renderer The renderer to draw on. \param vx Vertex array containing X coordinates of the points of the filled polygon. \param vy Vertex array containing Y coordinates of the points of the filled polygon. \param n Number of points in the vertex array. Minimum number is 3. \param r The red value of the filled polygon to draw. \param g The green value of the filled polygon to draw. \param b The blue value of the filed polygon to draw. \param a The alpha value of the filled polygon to draw. \returns Returns 0 on success, -1 on failure. */ int filledPolygonRGBA(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { return filledPolygonRGBAMT(renderer, vx, vy, n, r, g, b, a, NULL, NULL); } /* ---- Textured Polygon */ /*! \brief Internal function to draw a textured horizontal line. \param renderer The renderer to draw on. \param x1 X coordinate of the first point (i.e. left) of the line. \param x2 X coordinate of the second point (i.e. right) of the line. \param y Y coordinate of the points of the line. \param texture The texture to retrieve color information from. \param texture_w The width of the texture. \param texture_h The height of the texture. \param texture_dx The X offset for the texture lookup. \param texture_dy The Y offset for the textured lookup. \returns Returns 0 on success, -1 on failure. */ int _HLineTextured(SDL_Renderer *renderer, Sint16 x1, Sint16 x2, Sint16 y, SDL_Texture *texture, int texture_w, int texture_h, int texture_dx, int texture_dy) { Sint16 w; Sint16 xtmp; int result = 0; int texture_x_walker; int texture_y_start; SDL_Rect source_rect,dst_rect; int pixels_written,write_width; /* * Swap x1, x2 if required to ensure x1<=x2 */ if (x1 > x2) { xtmp = x1; x1 = x2; x2 = xtmp; } /* * Calculate width to draw */ w = x2 - x1 + 1; /* * Determine where in the texture we start drawing */ texture_x_walker = (x1 - texture_dx) % texture_w; if (texture_x_walker < 0){ texture_x_walker = texture_w + texture_x_walker ; } texture_y_start = (y + texture_dy) % texture_h; if (texture_y_start < 0){ texture_y_start = texture_h + texture_y_start; } // setup the source rectangle; we are only drawing one horizontal line source_rect.y = texture_y_start; source_rect.x = texture_x_walker; source_rect.h = 1; // we will draw to the current y dst_rect.y = y; // if there are enough pixels left in the current row of the texture // draw it all at once if (w <= texture_w -texture_x_walker){ source_rect.w = w; source_rect.x = texture_x_walker; dst_rect.x= x1; result = (SDL_RenderCopy(renderer, texture, &source_rect ,&dst_rect) == 0); } else { // we need to draw multiple times // draw the first segment pixels_written = texture_w - texture_x_walker; source_rect.w = pixels_written; source_rect.x = texture_x_walker; dst_rect.x= x1; result |= (SDL_RenderCopy(renderer, texture, &source_rect , &dst_rect) == 0); write_width = texture_w; // now draw the rest // set the source x to 0 source_rect.x = 0; while (pixels_written < w){ if (write_width >= w - pixels_written) { write_width = w - pixels_written; } source_rect.w = write_width; dst_rect.x = x1 + pixels_written; result |= (SDL_RenderCopy(renderer,texture,&source_rect , &dst_rect) == 0); pixels_written += write_width; } } return result; } /*! \brief Draws a polygon filled with the given texture (Multi-Threading Capable). \param renderer The renderer to draw on. \param vx array of x vector components \param vy array of x vector components \param n the amount of vectors in the vx and vy array \param texture the sdl surface to use to fill the polygon \param texture_dx the offset of the texture relative to the screeen. If you move the polygon 10 pixels to the left and want the texture to apear the same you need to increase the texture_dx value \param texture_dy see texture_dx \param polyInts Preallocated temp array storage for vertex sorting (used for multi-threaded operation) \param polyAllocated Flag indicating oif the temp array was allocated (used for multi-threaded operation) \returns Returns 0 on success, -1 on failure. */ int texturedPolygonMT(SDL_Renderer *renderer, const Sint16 * vx, const Sint16 * vy, int n, SDL_Surface * texture, int texture_dx, int texture_dy, int **polyInts, int *polyAllocated) { int result; int i; int y, xa, xb; int minx,maxx,miny, maxy; int x1, y1; int x2, y2; int ind1, ind2; int ints; int *gfxPrimitivesPolyInts = NULL; int gfxPrimitivesPolyAllocated = 0; SDL_Texture *textureAsTexture; /* * Sanity check number of edges */ if (n < 3) { return -1; } /* * Map polygon cache */ if ((polyInts==NULL) || (polyAllocated==NULL)) { /* Use global cache */ gfxPrimitivesPolyInts = gfxPrimitivesPolyIntsGlobal; gfxPrimitivesPolyAllocated = gfxPrimitivesPolyAllocatedGlobal; } else { /* Use local cache */ gfxPrimitivesPolyInts = *polyInts; gfxPrimitivesPolyAllocated = *polyAllocated; } /* * Allocate temp array, only grow array */ if (!gfxPrimitivesPolyAllocated) { gfxPrimitivesPolyInts = (int *) malloc(sizeof(int) * n); gfxPrimitivesPolyAllocated = n; } else { if (gfxPrimitivesPolyAllocated < n) { gfxPrimitivesPolyInts = (int *) realloc(gfxPrimitivesPolyInts, sizeof(int) * n); gfxPrimitivesPolyAllocated = n; } } /* * Check temp array */ if (gfxPrimitivesPolyInts==NULL) { gfxPrimitivesPolyAllocated = 0; } /* * Update cache variables */ if ((polyInts==NULL) || (polyAllocated==NULL)) { gfxPrimitivesPolyIntsGlobal = gfxPrimitivesPolyInts; gfxPrimitivesPolyAllocatedGlobal = gfxPrimitivesPolyAllocated; } else { *polyInts = gfxPrimitivesPolyInts; *polyAllocated = gfxPrimitivesPolyAllocated; } /* * Check temp array again */ if (gfxPrimitivesPolyInts==NULL) { return(-1); } /* * Determine X,Y minima,maxima */ miny = vy[0]; maxy = vy[0]; minx = vx[0]; maxx = vx[0]; for (i = 1; (i < n); i++) { if (vy[i] < miny) { miny = vy[i]; } else if (vy[i] > maxy) { maxy = vy[i]; } if (vx[i] < minx) { minx = vx[i]; } else if (vx[i] > maxx) { maxx = vx[i]; } } /* * Draw, scanning y */ result = 0; for (y = miny; (y <= maxy); y++) { ints = 0; for (i = 0; (i < n); i++) { if (!i) { ind1 = n - 1; ind2 = 0; } else { ind1 = i - 1; ind2 = i; } y1 = vy[ind1]; y2 = vy[ind2]; if (y1 < y2) { x1 = vx[ind1]; x2 = vx[ind2]; } else if (y1 > y2) { y2 = vy[ind1]; y1 = vy[ind2]; x2 = vx[ind1]; x1 = vx[ind2]; } else { continue; } if ( ((y >= y1) && (y < y2)) || ((y == maxy) && (y > y1) && (y <= y2)) ) { gfxPrimitivesPolyInts[ints++] = ((65536 * (y - y1)) / (y2 - y1)) * (x2 - x1) + (65536 * x1); } } qsort(gfxPrimitivesPolyInts, ints, sizeof(int), _gfxPrimitivesCompareInt); textureAsTexture = SDL_CreateTextureFromSurface(renderer, texture); if (textureAsTexture == NULL) { return (-1); } for (i = 0; (i < ints); i += 2) { xa = gfxPrimitivesPolyInts[i] + 1; xa = (xa >> 16) + ((xa & 32768) >> 15); xb = gfxPrimitivesPolyInts[i+1] - 1; xb = (xb >> 16) + ((xb & 32768) >> 15); result |= _HLineTextured(renderer, xa, xb, y, textureAsTexture, texture->w, texture->h, texture_dx, texture_dy); } SDL_DestroyTexture(textureAsTexture); } return (result); } /*! \brief Draws a polygon filled with the given texture. This standard version is calling multithreaded versions with NULL cache parameters. \param renderer The renderer to draw on. \param vx array of x vector components \param vy array of x vector components \param n the amount of vectors in the vx and vy array \param texture the sdl surface to use to fill the polygon \param texture_dx the offset of the texture relative to the screeen. if you move the polygon 10 pixels to the left and want the texture to apear the same you need to increase the texture_dx value \param texture_dy see texture_dx \returns Returns 0 on success, -1 on failure. */ int texturedPolygon(SDL_Renderer *renderer, const Sint16 * vx, const Sint16 * vy, int n, SDL_Surface *texture, int texture_dx, int texture_dy) { /* * Draw */ return (texturedPolygonMT(renderer, vx, vy, n, texture, texture_dx, texture_dy, NULL, NULL)); } /* ---- Character */ /*! \brief Global cache for NxM pixel font textures created at runtime. */ static SDL_Texture *gfxPrimitivesFont[256]; /*! \brief Pointer to the current font data. Default is a 8x8 pixel internal font. */ static const unsigned char *currentFontdata = gfxPrimitivesFontdata; /*! \brief Width of the current font. Default is 8. */ static Uint32 charWidth = 8; /*! \brief Height of the current font. Default is 8. */ static Uint32 charHeight = 8; /*! \brief Width for rendering. Autocalculated. */ static Uint32 charWidthLocal = 8; /*! \brief Height for rendering. Autocalculated. */ static Uint32 charHeightLocal = 8; /*! \brief Pitch of the current font in bytes. Default is 1. */ static Uint32 charPitch = 1; /*! \brief Characters 90deg clockwise rotations. Default is 0. Max is 3. */ static Uint32 charRotation = 0; /*! \brief Character data size in bytes of the current font. Default is 8. */ static Uint32 charSize = 8; /*! \brief Sets or resets the current global font data. The font data array is organized in follows: [fontdata] = [character 0][character 1]...[character 255] where [character n] = [byte 1 row 1][byte 2 row 1]...[byte {pitch} row 1][byte 1 row 2] ...[byte {pitch} row height] where [byte n] = [bit 0]...[bit 7] where [bit n] = [0 for transparent pixel|1 for colored pixel] \param fontdata Pointer to array of font data. Set to NULL, to reset global font to the default 8x8 font. \param cw Width of character in bytes. Ignored if fontdata==NULL. \param ch Height of character in bytes. Ignored if fontdata==NULL. */ void gfxPrimitivesSetFont(const void *fontdata, Uint32 cw, Uint32 ch) { int i; if ((fontdata) && (cw) && (ch)) { currentFontdata = (unsigned char *)fontdata; charWidth = cw; charHeight = ch; } else { currentFontdata = gfxPrimitivesFontdata; charWidth = 8; charHeight = 8; } charPitch = (charWidth+7)/8; charSize = charPitch * charHeight; /* Maybe flip width/height for rendering */ if ((charRotation==1) || (charRotation==3)) { charWidthLocal = charHeight; charHeightLocal = charWidth; } else { charWidthLocal = charWidth; charHeightLocal = charHeight; } /* Clear character cache */ for (i = 0; i < 256; i++) { if (gfxPrimitivesFont[i]) { SDL_DestroyTexture(gfxPrimitivesFont[i]); gfxPrimitivesFont[i] = NULL; } } } /*! \brief Sets current global font character rotation steps. Default is 0 (no rotation). 1 = 90deg clockwise. 2 = 180deg clockwise. 3 = 270deg clockwise. Changing the rotation, will reset the character cache. \param rotation Number of 90deg clockwise steps to rotate */ void gfxPrimitivesSetFontRotation(Uint32 rotation) { int i; rotation = rotation & 3; if (charRotation != rotation) { /* Store rotation */ charRotation = rotation; /* Maybe flip width/height for rendering */ if ((charRotation==1) || (charRotation==3)) { charWidthLocal = charHeight; charHeightLocal = charWidth; } else { charWidthLocal = charWidth; charHeightLocal = charHeight; } /* Clear character cache */ for (i = 0; i < 256; i++) { if (gfxPrimitivesFont[i]) { SDL_DestroyTexture(gfxPrimitivesFont[i]); gfxPrimitivesFont[i] = NULL; } } } } /*! \brief Draw a character of the currently set font. \param dst The surface to draw on. \param x X (horizontal) coordinate of the upper left corner of the character. \param y Y (vertical) coordinate of the upper left corner of the character. \param c The character to draw. \param r The red value of the character to draw. \param g The green value of the character to draw. \param b The blue value of the character to draw. \param a The alpha value of the character to draw. \returns Returns 0 on success, -1 on failure. */ int characterRGBA(SDL_Renderer *renderer, Sint16 x, Sint16 y, char c, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { SDL_Rect srect; SDL_Rect drect; int result; Uint32 ix, iy; const unsigned char *charpos; Uint8 *curpos; Uint8 patt, mask; Uint8 *linepos; Uint32 pitch; SDL_Surface *character; SDL_Surface *rotatedCharacter; Uint32 ci; /* * Setup source rectangle */ srect.x = 0; srect.y = 0; srect.w = charWidthLocal; srect.h = charHeightLocal; /* * Setup destination rectangle */ drect.x = x; drect.y = y; drect.w = charWidthLocal; drect.h = charHeightLocal; /* Character index in cache */ ci = (unsigned char) c; /* * Create new charWidth x charHeight bitmap surface if not already present. * Might get rotated later. */ if (gfxPrimitivesFont[ci] == NULL) { /* * Redraw character into surface */ character = SDL_CreateRGBSurface(SDL_SWSURFACE, charWidth, charHeight, 32, 0xFF000000, 0x00FF0000, 0x0000FF00, 0x000000FF); if (character == NULL) { return (-1); } charpos = currentFontdata + ci * charSize; linepos = (Uint8 *)character->pixels; pitch = character->pitch; /* * Drawing loop */ patt = 0; for (iy = 0; iy < charHeight; iy++) { mask = 0x00; curpos = linepos; for (ix = 0; ix < charWidth; ix++) { if (!(mask >>= 1)) { patt = *charpos++; mask = 0x80; } if (patt & mask) { *(Uint32 *)curpos = 0xffffffff; } else { *(Uint32 *)curpos = 0; } curpos += 4; } linepos += pitch; } /* Maybe rotate and replace cached image */ if (charRotation>0) { rotatedCharacter = rotateSurface90Degrees(character, charRotation); SDL_FreeSurface(character); character = rotatedCharacter; } /* Convert temp surface into texture */ gfxPrimitivesFont[ci] = SDL_CreateTextureFromSurface(renderer, character); SDL_FreeSurface(character); /* * Check pointer */ if (gfxPrimitivesFont[ci] == NULL) { return (-1); } } /* * Set color */ result = 0; result |= SDL_SetTextureColorMod(gfxPrimitivesFont[ci], r, g, b); result |= SDL_SetTextureAlphaMod(gfxPrimitivesFont[ci], a); /* * Draw texture onto destination */ result |= SDL_RenderCopy(renderer, gfxPrimitivesFont[ci], &srect, &drect); return (result); } /*! \brief Draw a character of the currently set font. \param renderer The renderer to draw on. \param x X (horizontal) coordinate of the upper left corner of the character. \param y Y (vertical) coordinate of the upper left corner of the character. \param c The character to draw. \param color The color value of the character to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int characterColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, char c, Uint32 color) { Uint8 *co = (Uint8 *)&color; return characterRGBA(renderer, x, y, c, co[0], co[1], co[2], co[3]); } /*! \brief Draw a string in the currently set font. The spacing between consequtive characters in the string is the fixed number of pixels of the character width of the current global font. \param renderer The renderer to draw on. \param x X (horizontal) coordinate of the upper left corner of the string. \param y Y (vertical) coordinate of the upper left corner of the string. \param s The string to draw. \param color The color value of the string to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int stringColor(SDL_Renderer * renderer, Sint16 x, Sint16 y, const char *s, Uint32 color) { Uint8 *c = (Uint8 *)&color; return stringRGBA(renderer, x, y, s, c[0], c[1], c[2], c[3]); } /*! \brief Draw a string in the currently set font. \param renderer The renderer to draw on. \param x X (horizontal) coordinate of the upper left corner of the string. \param y Y (vertical) coordinate of the upper left corner of the string. \param s The string to draw. \param r The red value of the string to draw. \param g The green value of the string to draw. \param b The blue value of the string to draw. \param a The alpha value of the string to draw. \returns Returns 0 on success, -1 on failure. */ int stringRGBA(SDL_Renderer * renderer, Sint16 x, Sint16 y, const char *s, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result = 0; Sint16 curx = x; Sint16 cury = y; const char *curchar = s; while (*curchar && !result) { result |= characterRGBA(renderer, curx, cury, *curchar, r, g, b, a); switch (charRotation) { case 0: curx += charWidthLocal; break; case 2: curx -= charWidthLocal; break; case 1: cury += charHeightLocal; break; case 3: cury -= charHeightLocal; break; } curchar++; } return (result); } /* ---- Bezier curve */ /*! \brief Internal function to calculate bezier interpolator of data array with ndata values at position 't'. \param data Array of values. \param ndata Size of array. \param t Position for which to calculate interpolated value. t should be between [0, ndata]. \returns Interpolated value at position t, value[0] when t<0, value[n-1] when t>n. */ double _evaluateBezier (double *data, int ndata, double t) { double mu, result; int n,k,kn,nn,nkn; double blend,muk,munk; /* Sanity check bounds */ if (t<0.0) { return(data[0]); } if (t>=(double)ndata) { return(data[ndata-1]); } /* Adjust t to the range 0.0 to 1.0 */ mu=t/(double)ndata; /* Calculate interpolate */ n=ndata-1; result=0.0; muk = 1; munk = pow(1-mu,(double)n); for (k=0;k<=n;k++) { nn = n; kn = k; nkn = n - k; blend = muk * munk; muk *= mu; munk /= (1-mu); while (nn >= 1) { blend *= nn; nn--; if (kn > 1) { blend /= (double)kn; kn--; } if (nkn > 1) { blend /= (double)nkn; nkn--; } } result += data[k] * blend; } return (result); } /*! \brief Draw a bezier curve with alpha blending. \param renderer The renderer to draw on. \param vx Vertex array containing X coordinates of the points of the bezier curve. \param vy Vertex array containing Y coordinates of the points of the bezier curve. \param n Number of points in the vertex array. Minimum number is 3. \param s Number of steps for the interpolation. Minimum number is 2. \param color The color value of the bezier curve to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int bezierColor(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n, int s, Uint32 color) { Uint8 *c = (Uint8 *)&color; return bezierRGBA(renderer, vx, vy, n, s, c[0], c[1], c[2], c[3]); } /*! \brief Draw a bezier curve with alpha blending. \param renderer The renderer to draw on. \param vx Vertex array containing X coordinates of the points of the bezier curve. \param vy Vertex array containing Y coordinates of the points of the bezier curve. \param n Number of points in the vertex array. Minimum number is 3. \param s Number of steps for the interpolation. Minimum number is 2. \param r The red value of the bezier curve to draw. \param g The green value of the bezier curve to draw. \param b The blue value of the bezier curve to draw. \param a The alpha value of the bezier curve to draw. \returns Returns 0 on success, -1 on failure. */ int bezierRGBA(SDL_Renderer * renderer, const Sint16 * vx, const Sint16 * vy, int n, int s, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; int i; double *x, *y, t, stepsize; Sint16 x1, y1, x2, y2; /* * Sanity check */ if (n < 3) { return (-1); } if (s < 2) { return (-1); } /* * Variable setup */ stepsize=(double)1.0/(double)s; /* Transfer vertices into float arrays */ if ((x=(double *)malloc(sizeof(double)*(n+1)))==NULL) { return(-1); } if ((y=(double *)malloc(sizeof(double)*(n+1)))==NULL) { free(x); return(-1); } for (i=0; ix = x1; b->y = y1; /* dx = abs(x2-x1), s1 = sign(x2-x1) */ if ((b->dx = x2 - x1) != 0) { if (b->dx < 0) { b->dx = -b->dx; b->s1 = -1; } else { b->s1 = 1; } } else { b->s1 = 0; } /* dy = abs(y2-y1), s2 = sign(y2-y1) */ if ((b->dy = y2 - y1) != 0) { if (b->dy < 0) { b->dy = -b->dy; b->s2 = -1; } else { b->s2 = 1; } } else { b->s2 = 0; } if (b->dy > b->dx) { temp = b->dx; b->dx = b->dy; b->dy = temp; b->swapdir = 1; } else { b->swapdir = 0; } b->count = (b->dx<0) ? 0 : (unsigned int)b->dx; b->dy <<= 1; b->error = b->dy - b->dx; b->dx <<= 1; return(0); } /*! \brief Internal function to move Bresenham line iterator to the next position. Maybe updates the x and y coordinates of the iterator struct. \param b Pointer to struct for bresenham line drawing state. \returns Returns 0 on success, 1 if last point was reached, 2 if moving past end-of-line, -1 on failure. */ int _bresenhamIterate(SDL2_gfxBresenhamIterator *b) { if (b==NULL) { return (-1); } /* last point check */ if (b->count==0) { return (2); } while (b->error >= 0) { if (b->swapdir) { b->x += b->s1; } else { b->y += b->s2; } b->error -= b->dx; } if (b->swapdir) { b->y += b->s2; } else { b->x += b->s1; } b->error += b->dy; b->count--; /* count==0 indicates "end-of-line" */ return ((b->count) ? 0 : 1); } /*! \brief Internal function to to draw parallel lines with Murphy algorithm. \param m Pointer to struct for murphy iterator. \param x X coordinate of point. \param y Y coordinate of point. \param d1 Direction square/diagonal. */ void _murphyParaline(SDL2_gfxMurphyIterator *m, Sint16 x, Sint16 y, int d1) { int p; d1 = -d1; for (p = 0; p <= m->u; p++) { pixel(m->renderer, x, y); if (d1 <= m->kt) { if (m->oct2 == 0) { x++; } else { if (m->quad4 == 0) { y++; } else { y--; } } d1 += m->kv; } else { x++; if (m->quad4 == 0) { y++; } else { y--; } d1 += m->kd; } } m->tempx = x; m->tempy = y; } /*! \brief Internal function to to draw one iteration of the Murphy algorithm. \param m Pointer to struct for murphy iterator. \param miter Iteration count. \param ml1bx X coordinate of a point. \param ml1by Y coordinate of a point. \param ml2bx X coordinate of a point. \param ml2by Y coordinate of a point. \param ml1x X coordinate of a point. \param ml1y Y coordinate of a point. \param ml2x X coordinate of a point. \param ml2y Y coordinate of a point. */ void _murphyIteration(SDL2_gfxMurphyIterator *m, Uint8 miter, Uint16 ml1bx, Uint16 ml1by, Uint16 ml2bx, Uint16 ml2by, Uint16 ml1x, Uint16 ml1y, Uint16 ml2x, Uint16 ml2y) { int atemp1, atemp2; int ftmp1, ftmp2; Uint16 m1x, m1y, m2x, m2y; Uint16 fix, fiy, lax, lay, curx, cury; Sint16 px[4], py[4]; SDL2_gfxBresenhamIterator b; if (miter > 1) { if (m->first1x != -32768) { fix = (m->first1x + m->first2x) / 2; fiy = (m->first1y + m->first2y) / 2; lax = (m->last1x + m->last2x) / 2; lay = (m->last1y + m->last2y) / 2; curx = (ml1x + ml2x) / 2; cury = (ml1y + ml2y) / 2; atemp1 = (fix - curx); atemp2 = (fiy - cury); ftmp1 = atemp1 * atemp1 + atemp2 * atemp2; atemp1 = (lax - curx); atemp2 = (lay - cury); ftmp2 = atemp1 * atemp1 + atemp2 * atemp2; if (ftmp1 <= ftmp2) { m1x = m->first1x; m1y = m->first1y; m2x = m->first2x; m2y = m->first2y; } else { m1x = m->last1x; m1y = m->last1y; m2x = m->last2x; m2y = m->last2y; } atemp1 = (m2x - ml2x); atemp2 = (m2y - ml2y); ftmp1 = atemp1 * atemp1 + atemp2 * atemp2; atemp1 = (m2x - ml2bx); atemp2 = (m2y - ml2by); ftmp2 = atemp1 * atemp1 + atemp2 * atemp2; if (ftmp2 >= ftmp1) { ftmp1 = ml2bx; ftmp2 = ml2by; ml2bx = ml2x; ml2by = ml2y; ml2x = ftmp1; ml2y = ftmp2; ftmp1 = ml1bx; ftmp2 = ml1by; ml1bx = ml1x; ml1by = ml1y; ml1x = ftmp1; ml1y = ftmp2; } /* * Lock the surface */ _bresenhamInitialize(&b, m2x, m2y, m1x, m1y); do { pixel(m->renderer, b.x, b.y); } while (_bresenhamIterate(&b)==0); _bresenhamInitialize(&b, m1x, m1y, ml1bx, ml1by); do { pixel(m->renderer, b.x, b.y); } while (_bresenhamIterate(&b)==0); _bresenhamInitialize(&b, ml1bx, ml1by, ml2bx, ml2by); do { pixel(m->renderer, b.x, b.y); } while (_bresenhamIterate(&b)==0); _bresenhamInitialize(&b, ml2bx, ml2by, m2x, m2y); do { pixel(m->renderer, b.x, b.y); } while (_bresenhamIterate(&b)==0); px[0] = m1x; px[1] = m2x; px[2] = ml1bx; px[3] = ml2bx; py[0] = m1y; py[1] = m2y; py[2] = ml1by; py[3] = ml2by; polygon(m->renderer, px, py, 4); } } m->last1x = ml1x; m->last1y = ml1y; m->last2x = ml2x; m->last2y = ml2y; m->first1x = ml1bx; m->first1y = ml1by; m->first2x = ml2bx; m->first2y = ml2by; } #define HYPOT(x,y) sqrt((double)(x)*(double)(x)+(double)(y)*(double)(y)) /*! \brief Internal function to to draw wide lines with Murphy algorithm. Draws lines parallel to ideal line. \param m Pointer to struct for murphy iterator. \param x1 X coordinate of first point. \param y1 Y coordinate of first point. \param x2 X coordinate of second point. \param y2 Y coordinate of second point. \param width Width of line. \param miter Iteration count. */ void _murphyWideline(SDL2_gfxMurphyIterator *m, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 width, Uint8 miter) { float offset = (float)width / 2.f; Sint16 temp; Sint16 ptx, pty, ptxx, ptxy, ml1x, ml1y, ml2x, ml2y, ml1bx, ml1by, ml2bx, ml2by; int d0, d1; /* difference terms d0=perpendicular to line, d1=along line */ int q; /* pel counter,q=perpendicular to line */ int tmp; int dd; /* distance along line */ int tk; /* thickness threshold */ double ang; /* angle for initial point calculation */ double sang, cang; /* Initialisation */ m->u = x2 - x1; /* delta x */ m->v = y2 - y1; /* delta y */ if (m->u < 0) { /* swap to make sure we are in quadrants 1 or 4 */ temp = x1; x1 = x2; x2 = temp; temp = y1; y1 = y2; y2 = temp; m->u *= -1; m->v *= -1; } if (m->v < 0) { /* swap to 1st quadrant and flag */ m->v *= -1; m->quad4 = 1; } else { m->quad4 = 0; } if (m->v > m->u) { /* swap things if in 2 octant */ tmp = m->u; m->u = m->v; m->v = tmp; m->oct2 = 1; } else { m->oct2 = 0; } m->ku = m->u + m->u; /* change in l for square shift */ m->kv = m->v + m->v; /* change in d for square shift */ m->kd = m->kv - m->ku; /* change in d for diagonal shift */ m->kt = m->u - m->kv; /* diag/square decision threshold */ d0 = 0; d1 = 0; dd = 0; ang = atan((double) m->v / (double) m->u); /* calc new initial point - offset both sides of ideal */ sang = sin(ang); cang = cos(ang); if (m->oct2 == 0) { ptx = x1 + (Sint16)lrint(offset * sang); if (m->quad4 == 0) { pty = y1 - (Sint16)lrint(offset * cang); } else { pty = y1 + (Sint16)lrint(offset * cang); } } else { ptx = x1 - (Sint16)lrint(offset * cang); if (m->quad4 == 0) { pty = y1 + (Sint16)lrint(offset * sang); } else { pty = y1 - (Sint16)lrint(offset * sang); } } /* used here for constant thickness line */ tk = (int) (4. * HYPOT(ptx - x1, pty - y1) * HYPOT(m->u, m->v)); if (miter == 0) { m->first1x = -32768; m->first1y = -32768; m->first2x = -32768; m->first2y = -32768; m->last1x = -32768; m->last1y = -32768; m->last2x = -32768; m->last2y = -32768; } ptxx = ptx; ptxy = pty; for (q = 0; dd <= tk; q++) { /* outer loop, stepping perpendicular to line */ _murphyParaline(m, ptx, pty, d1); /* call to inner loop - right edge */ if (q == 0) { ml1x = ptx; ml1y = pty; ml1bx = m->tempx; ml1by = m->tempy; } else { ml2x = ptx; ml2y = pty; ml2bx = m->tempx; ml2by = m->tempy; } if (d0 < m->kt) { /* square move */ if (m->oct2 == 0) { if (m->quad4 == 0) { pty++; } else { pty--; } } else { ptx++; } } else { /* diagonal move */ dd += m->kv; d0 -= m->ku; if (d1 < m->kt) { /* normal diagonal */ if (m->oct2 == 0) { ptx--; if (m->quad4 == 0) { pty++; } else { pty--; } } else { ptx++; if (m->quad4 == 0) { pty--; } else { pty++; } } d1 += m->kv; } else { /* double square move, extra parallel line */ if (m->oct2 == 0) { ptx--; } else { if (m->quad4 == 0) { pty--; } else { pty++; } } d1 += m->kd; if (dd > tk) { _murphyIteration(m, miter, ml1bx, ml1by, ml2bx, ml2by, ml1x, ml1y, ml2x, ml2y); return; /* breakout on the extra line */ } _murphyParaline(m, ptx, pty, d1); if (m->oct2 == 0) { if (m->quad4 == 0) { pty++; } else { pty--; } } else { ptx++; } } } dd += m->ku; d0 += m->kv; } _murphyIteration(m, miter, ml1bx, ml1by, ml2bx, ml2by, ml1x, ml1y, ml2x, ml2y); } /*! \brief Draw a thick line with alpha blending. \param dst The surface to draw on. \param x1 X coordinate of the first point of the line. \param y1 Y coordinate of the first point of the line. \param x2 X coordinate of the second point of the line. \param y2 Y coordinate of the second point of the line. \param width Width of the line in pixels. Must be >0. \param color The color value of the line to draw (0xRRGGBBAA). \returns Returns 0 on success, -1 on failure. */ int thickLineColor(SDL_Renderer *renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 width, Uint32 color) { Uint8 *c = (Uint8 *)&color; return thickLineRGBA(renderer, x1, y1, x2, y2, width, c[0], c[1], c[2], c[3]); } /*! \brief Draw a thick line with alpha blending. \param dst The surface to draw on. \param x1 X coordinate of the first point of the line. \param y1 Y coordinate of the first point of the line. \param x2 X coordinate of the second point of the line. \param y2 Y coordinate of the second point of the line. \param width Width of the line in pixels. Must be >0. \param r The red value of the character to draw. \param g The green value of the character to draw. \param b The blue value of the character to draw. \param a The alpha value of the character to draw. \returns Returns 0 on success, -1 on failure. */ int thickLineRGBA(SDL_Renderer *renderer, Sint16 x1, Sint16 y1, Sint16 x2, Sint16 y2, Uint8 width, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { int result; int wh; SDL2_gfxMurphyIterator m; if (renderer == NULL) { return -1; } if (width < 1) { return -1; } /* Special case: thick "point" */ if ((x1 == x2) && (y1 == y2)) { wh = width / 2; return boxRGBA(renderer, x1 - wh, y1 - wh, x2 + width, y2 + width, r, g, b, a); } /* * Set color */ result = 0; result |= SDL_SetRenderDrawBlendMode(renderer, (a == 255) ? SDL_BLENDMODE_NONE : SDL_BLENDMODE_BLEND); result |= SDL_SetRenderDrawColor(renderer, r, g, b, a); /* * Draw */ m.renderer = renderer; _murphyWideline(&m, x1, y1, x2, y2, width, 0); _murphyWideline(&m, x1, y1, x2, y2, width, 1); return(0); }