/* * The Mana Client * Copyright (C) 2004-2009 The Mana World Development Team * Copyright (C) 2009-2012 The Mana Developers * * This file is part of The Mana Client. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "map.h" #include "actorspritemanager.h" #include "client.h" #include "configuration.h" #include "graphics.h" #include "particle.h" #include "simpleanimation.h" #include "tileset.h" #include "resources/ambientlayer.h" #include "resources/image.h" #include "resources/resourcemanager.h" #include "net/net.h" #include "utils/dtor.h" #include "utils/stringutils.h" #include #include /** * A location on a tile map. Used for pathfinding, open list. */ struct Location { Location(int px, int py, MetaTile *ptile): x(px), y(py), tile(ptile) {} /** * Comparison operator. */ bool operator< (const Location &loc) const { return tile->Fcost > loc.tile->Fcost; } int x, y; MetaTile *tile; }; TileAnimation::TileAnimation(Animation *ani): mLastImage(nullptr) { mAnimation = new SimpleAnimation(ani); } TileAnimation::~TileAnimation() { delete mAnimation; } void TileAnimation::update(int ticks) { if (!mAnimation) return; // update animation mAnimation->update(ticks); // exchange images Image *img = mAnimation->getCurrentImage(); if (img != mLastImage) { for (auto i = mAffected.begin(); i != mAffected.end(); i++) { i->first->setTile(i->second, img); } mLastImage = img; } } MapLayer::MapLayer(int x, int y, int width, int height, bool isFringeLayer, Map *map): mX(x), mY(y), mWidth(width), mHeight(height), mIsFringeLayer(isFringeLayer), mMap(map) { const int size = mWidth * mHeight; mTiles = new Image*[size]; std::fill_n(mTiles, size, (Image*) nullptr); } MapLayer::~MapLayer() { delete[] mTiles; } void MapLayer::setTile(int x, int y, Image *img) { setTile(x + y * mWidth, img); } void MapLayer::draw(Graphics *graphics, int startX, int startY, int endX, int endY, int scrollX, int scrollY, const Actors &actors, int debugFlags) const { startX -= mX; startY -= mY; endX -= mX; endY -= mY; if (startX < 0) startX = 0; if (startY < 0) startY = 0; if (endX > mWidth) endX = mWidth; if (endY > mHeight) endY = mHeight; auto ai = actors.begin(); int dx = (mX * mMap->getTileWidth()) - scrollX; int dy = (mY * mMap->getTileHeight()) - scrollY + mMap->getTileHeight(); for (int y = startY; y < endY; y++) { int pixelY = y * mMap->getTileHeight(); // If drawing the fringe layer, make sure all actors above this row of // tiles have been drawn if (mIsFringeLayer) { while (ai != actors.end() && (*ai)->getDrawOrder() <= y * mMap->getTileHeight()) { (*ai)->draw(graphics, -scrollX, -scrollY); ++ai; } } if (!(debugFlags & Map::DEBUG_SPECIAL3)) { const int py0 = pixelY + dy; for (int x = startX; x < endX; x++) { Image *img = getTile(x, y); if (img) { const int px = (x * mMap->getTileWidth()) + dx; const int py = py0 - img->getHeight(); if (!(debugFlags & (Map::DEBUG_SPECIAL1 | Map::DEBUG_SPECIAL2)) || img->getHeight() <= mMap->getTileHeight()) { int width = 0; int c = getTileDrawWidth(x, y, endX, width); if (!c) { graphics->drawImage(img, px, py); } else { graphics->drawImagePattern(img, px, py, width, img->getHeight()); } x += c; } } } } } // Draw any remaining actors if (mIsFringeLayer) { while (ai != actors.end()) { (*ai)->draw(graphics, -scrollX, -scrollY); ai++; } } } int MapLayer::getTileDrawWidth(int x1, int y1, int endX, int &width) const { Image *img1 = getTile(x1, y1); int c = 0; width = img1->getWidth(); // Images that don't match the tile width can't be drawn as a pattern if (width != mMap->getTileWidth()) return c; for (int x = x1 + 1; x < endX; x++) { Image *img = getTile(x, y1); if (img != img1) break; c++; width += img->getWidth(); } return c; } Map::Map(int width, int height, int tileWidth, int tileHeight): mWidth(width), mHeight(height), mTileWidth(tileWidth), mTileHeight(tileHeight), mMaxTileHeight(tileHeight), mMaxTileWidth(tileWidth), mDebugFlags(DEBUG_NONE), mOnClosedList(1), mOnOpenList(2), mLastScrollX(0.0f), mLastScrollY(0.0f) { const int size = mWidth * mHeight; mMetaTiles = new MetaTile[size]; for (int i = 0; i < NB_BLOCKTYPES; i++) { mOccupation[i] = new unsigned[size]; memset(mOccupation[i], 0, size * sizeof(unsigned)); } } Map::~Map() { // delete metadata, layers, tilesets and overlays delete[] mMetaTiles; for (int i = 0; i < NB_BLOCKTYPES; i++) { delete[] mOccupation[i]; } delete_all(mLayers); delete_all(mTilesets); delete_all(mForegrounds); delete_all(mBackgrounds); delete_all(mTileAnimations); } void Map::initializeAmbientLayers() { ResourceManager *resman = ResourceManager::getInstance(); auto addAmbientLayer = [=](const std::string &name, std::list &list) { if (Image *img = resman->getImage(getProperty(name + "image"))) { auto ambientLayer = new AmbientLayer(img); ambientLayer->mParallax = getFloatProperty(name + "parallax"); ambientLayer->mSpeedX = getFloatProperty(name + "scrollX"); ambientLayer->mSpeedY = getFloatProperty(name + "scrollY"); ambientLayer->mMask = getIntProperty(name + "mask", 1); list.push_back(ambientLayer); // The AmbientLayer takes control over the image. img->decRef(); } }; // search for "foreground*" or "overlay*" (old term) in map properties for (int i = 0; /* terminated by a break */; i++) { if (hasProperty("foreground" + toString(i) + "image")) { addAmbientLayer("foreground" + toString(i), mForegrounds); } else if (hasProperty("overlay" + toString(i) + "image")) { addAmbientLayer("overlay" + toString(i), mForegrounds); } else { break; // the FOR loop } } // search for "background*" in map properties for (int i = 0; hasProperty("background" + toString(i) + "image"); i++) { addAmbientLayer("background" + toString(i), mBackgrounds); } } void Map::addLayer(MapLayer *layer) { mLayers.push_back(layer); } void Map::addTileset(Tileset *tileset) { mTilesets.push_back(tileset); if (tileset->getHeight() > mMaxTileHeight) mMaxTileHeight = tileset->getHeight(); if (tileset->getWidth() > mMaxTileWidth) mMaxTileWidth = tileset->getWidth(); } bool actorCompare(const Actor *a, const Actor *b) { return a->getDrawOrder() < b->getDrawOrder(); } void Map::update(int ticks) { // Update animated tiles for (auto iAni = mTileAnimations.begin(); iAni != mTileAnimations.end(); iAni++) { iAni->second->update(ticks); } } void Map::draw(Graphics *graphics, int scrollX, int scrollY) { // Calculate range of tiles which are on-screen int endPixelY = graphics->getHeight() + scrollY + mTileHeight - 1; endPixelY += mMaxTileHeight - mTileHeight; int startX = (scrollX - mMaxTileWidth + mTileWidth) / mTileWidth; int startY = scrollY / mTileHeight; int endX = (graphics->getWidth() + scrollX + mTileWidth - 1) / mTileWidth; int endY = endPixelY / mTileHeight; // Make sure actors are sorted ascending by Y-coordinate // so that they overlap correctly mActors.sort(actorCompare); // update scrolling of all ambient layers updateAmbientLayers(scrollX, scrollY); // Draw backgrounds drawAmbientLayers(graphics, BACKGROUND_LAYERS, scrollX, scrollY, config.getIntValue("OverlayDetail")); // draw the game world Layers::const_iterator layeri = mLayers.begin(); bool overFringe = false; if (mDebugFlags & DEBUG_SPECIAL3) { for (; layeri != mLayers.end(); ++layeri) { if ((*layeri)->isFringeLayer()) { (*layeri)->draw(graphics, startX, startY, endX, endY, scrollX, scrollY, mActors, mDebugFlags); } } } else { for (; layeri != mLayers.end() && !overFringe; ++layeri) { if (((*layeri)->getMask() & mMask) == 0) continue; if ((*layeri)->isFringeLayer() && (mDebugFlags & DEBUG_SPECIAL2)) overFringe = true; (*layeri)->draw(graphics, startX, startY, endX, endY, scrollX, scrollY, mActors, mDebugFlags); } } // If the transparency hasn't been disabled, if (Image::useOpenGL() || !Image::SDLisTransparencyDisabled()) { // We draw beings with a lower opacity to make them visible // even when covered by a wall or some other elements... Actors::const_iterator ai = mActors.begin(); while (ai != mActors.end()) { if (Actor *actor = *ai) { // For now, just draw actors with only one layer. if (actor->drawnWhenBehind()) { actor->setAlpha(0.3f); actor->draw(graphics, -scrollX, -scrollY); actor->setAlpha(1.0f); } } ai++; } } drawAmbientLayers(graphics, FOREGROUND_LAYERS, scrollX, scrollY, config.getIntValue("OverlayDetail")); } void Map::drawCollision(Graphics *graphics, int scrollX, int scrollY, int debugFlags) { int endPixelY = graphics->getHeight() + scrollY + mTileHeight - 1; int startX = scrollX / mTileWidth; int startY = scrollY / mTileHeight; int endX = (graphics->getWidth() + scrollX + mTileWidth - 1) / mTileWidth; int endY = endPixelY / mTileHeight; if (startX < 0) startX = 0; if (startY < 0) startY = 0; if (endX > mWidth) endX = mWidth; if (endY > mHeight) endY = mHeight; for (int y = startY; y < endY; y++) { for (int x = startX; x < endX; x++) { graphics->setColor(gcn::Color(0, 0, 0, 64)); if (debugFlags & DEBUG_GRID) { graphics->drawRectangle(gcn::Rectangle( x * mTileWidth - scrollX, y * mTileHeight - scrollY, mTileWidth + 1, mTileHeight + 1)); } if (!(debugFlags & DEBUG_COLLISION_TILES)) continue; if (!getWalk(x, y, BLOCKMASK_WALL)) { graphics->setColor(gcn::Color(0, 0, 200, 64)); graphics->fillRectangle(gcn::Rectangle( x * mTileWidth - scrollX, y * mTileHeight - scrollY, mTileWidth, mTileHeight)); } if (!getWalk(x, y, BLOCKMASK_MONSTER)) { graphics->setColor(gcn::Color(200, 0, 0, 64)); graphics->fillRectangle(gcn::Rectangle( x * mTileWidth - scrollX, y * mTileHeight - scrollY, mTileWidth, mTileHeight)); } if (!getWalk(x, y, BLOCKMASK_CHARACTER)) { graphics->setColor(gcn::Color(0, 200, 0, 64)); graphics->fillRectangle(gcn::Rectangle( x * mTileWidth - scrollX, y * mTileHeight - scrollY, mTileWidth, mTileHeight)); } } } } void Map::updateAmbientLayers(float scrollX, float scrollY) { static int lastTick = tick_time; // static = only initialized at first call if (mLastScrollX == 0.0f && mLastScrollY == 0.0f) { // First call - initialisation mLastScrollX = scrollX; mLastScrollY = scrollY; } // Update Overlays float dx = scrollX - mLastScrollX; float dy = scrollY - mLastScrollY; int timePassed = get_elapsed_time(lastTick); std::list::iterator i; for (i = mBackgrounds.begin(); i != mBackgrounds.end(); i++) { if (((*i)->mMask & mMask) == 0) continue; (*i)->update(timePassed, dx, dy); } for (i = mForegrounds.begin(); i != mForegrounds.end(); i++) { if (((*i)->mMask & mMask) == 0) continue; (*i)->update(timePassed, dx, dy); } mLastScrollX = scrollX; mLastScrollY = scrollY; lastTick = tick_time; } void Map::drawAmbientLayers(Graphics *graphics, LayerType type, float scrollX, float scrollY, int detail) { // Detail 0 = no ambient effects except background image if (detail <= 0 && type != BACKGROUND_LAYERS) return; // find out which layer list to draw std::list *layers; switch (type) { case FOREGROUND_LAYERS: layers = &mForegrounds; break; case BACKGROUND_LAYERS: layers = &mBackgrounds; break; default: // New type of ambient layers added here without adding it // to Map::drawAmbientLayers. assert(false); break; } // Draw overlays for (auto i = layers->begin(); i != layers->end(); i++) { if (((*i)->mMask & mMask) == 0) continue; (*i)->draw(graphics, graphics->getWidth(), graphics->getHeight()); // Detail 1: only one overlay, higher: all overlays if (detail == 1) break; } } Tileset *Map::getTilesetWithGid(unsigned gid) const { Tileset *s = nullptr; for (auto it = mTilesets.begin(), it_end = mTilesets.end(); it < it_end && (*it)->getFirstGid() <= gid; it++) s = *it; return s; } void Map::blockTile(int x, int y, BlockType type) { if (type == BLOCKTYPE_NONE || !contains(x, y)) return; const int tileNum = x + y * mWidth; if (mOccupation[type][tileNum] < UINT_MAX && (++mOccupation[type][tileNum]) > 0) { switch (type) { case BLOCKTYPE_WALL: mMetaTiles[tileNum].blockmask |= BLOCKMASK_WALL; break; case BLOCKTYPE_CHARACTER: mMetaTiles[tileNum].blockmask |= BLOCKMASK_CHARACTER; break; case BLOCKTYPE_MONSTER: mMetaTiles[tileNum].blockmask |= BLOCKMASK_MONSTER; break; default: // Do nothing. break; } } } bool Map::getWalk(int x, int y, unsigned char walkmask) const { // You can't walk outside of the map if (!contains(x, y)) return false; // Check if the tile is walkable return !(mMetaTiles[x + y * mWidth].blockmask & walkmask); } bool Map::occupied(int x, int y) const { const ActorSprites &actors = actorSpriteManager->getAll(); ActorSpritesConstIterator it, it_end; for (it = actors.begin(), it_end = actors.end(); it != it_end; it++) { const ActorSprite *actor = *it; if (actor->getTileX() == x && actor->getTileY() == y && actor->getType() != ActorSprite::FLOOR_ITEM) return true; } return false; } Vector Map::getTileCenter(int x, int y) { Vector tileCenterPos; tileCenterPos.x = x * mTileWidth + mTileWidth / 2; tileCenterPos.y = y * mTileHeight + mTileHeight / 2; return tileCenterPos; } bool Map::contains(int x, int y) const { return x >= 0 && y >= 0 && x < mWidth && y < mHeight; } MetaTile *Map::getMetaTile(int x, int y) const { return &mMetaTiles[x + y * mWidth]; } Actors::iterator Map::addActor(Actor *actor) { mActors.push_front(actor); return mActors.begin(); } void Map::removeActor(Actors::iterator iterator) { mActors.erase(iterator); } std::string Map::getMusicFile() const { return getProperty("music"); } std::string Map::getName() const { if (hasProperty("name")) return getProperty("name"); return getProperty("mapname"); } std::string Map::getFilename() const { std::string fileName = getProperty("_filename"); int lastSlash = fileName.rfind("/") + 1; int lastDot = fileName.rfind("."); return fileName.substr(lastSlash, lastDot - lastSlash); } Position Map::checkNodeOffsets(int radius, unsigned char walkMask, const Position &position) const { // Pre-computing character's position in tiles const int tx = position.x / mTileWidth; const int ty = position.y / mTileHeight; // Pre-computing character's position offsets. int fx = position.x % mTileWidth; int fy = position.y % mTileHeight; // Compute the being radius: // FIXME: Hande beings with more than 1/2 tile radius by not letting them // go or spawn in too narrow places. The server will have to be aware // of being's radius value (in tiles) to handle this gracefully. if (radius > mTileWidth / 2) radius = mTileWidth / 2; // set a default value if no value returned. if (radius < 1) radius = mTileWidth / 3; // We check diagonal first as they are more restrictive. // Top-left border check if (!getWalk(tx - 1, ty - 1, walkMask) && fy < radius && fx < radius) { fx = fy = radius; } // Top-right border check if (!getWalk(tx + 1, ty - 1, walkMask) && (fy < radius) && fx > (mTileWidth - radius)) { fx = mTileWidth - radius; fy = radius; } // Bottom-left border check if (!getWalk(tx - 1, ty + 1, walkMask) && fy > (mTileHeight - radius) && fx < radius) { fx = radius; fy = mTileHeight - radius; } // Bottom-right border check if (!getWalk(tx + 1, ty + 1, walkMask) && fy > (mTileHeight - radius) && fx > (mTileWidth - radius)) { fx = mTileWidth - radius; fy = mTileHeight - radius; } // Fix coordinates so that the player does not seem to dig into walls. if (fx > (mTileWidth - radius) && !getWalk(tx + 1, ty, walkMask)) fx = mTileWidth - radius; else if (fx < radius && !getWalk(tx - 1, ty, walkMask)) fx = radius; else if (fy > (mTileHeight - radius) && !getWalk(tx, ty + 1, walkMask)) fy = mTileHeight - radius; else if (fy < radius && !getWalk(tx, ty - 1, walkMask)) fy = radius; return Position(tx * mTileWidth + fx, ty * mTileHeight + fy); } Path Map::findTilePath(int startPixelX, int startPixelY, int endPixelX, int endPixelY, unsigned char walkMask, int maxCost) { Path myPath = findPath(startPixelX / mTileWidth, startPixelY / mTileHeight, endPixelX / mTileWidth, endPixelY / mTileHeight, walkMask, maxCost); // Don't compute empty coordinates. if (myPath.empty()) return myPath; // Convert the map path to pixels from the tile position auto it = myPath.begin(); while (it != myPath.end()) { // The new pixel position will be the tile center. *it = Position(it->x * mTileWidth + mTileWidth / 2, it->y * mTileHeight + mTileHeight / 2); ++it; } return myPath; } Path Map::findPixelPath(int startPixelX, int startPixelY, int endPixelX, int endPixelY, int radius, unsigned char walkMask, int maxCost) { Path myPath = findPath(startPixelX / mTileWidth, startPixelY / mTileHeight, endPixelX / mTileWidth, endPixelY / mTileHeight, walkMask, maxCost); // Don't compute empty coordinates. if (myPath.empty()) return myPath; // Find the starting offset float startOffsetX = (startPixelX % mTileWidth); float startOffsetY = (startPixelY % mTileHeight); // Find the ending offset float endOffsetX = (endPixelX % mTileWidth); float endOffsetY = (endPixelY % mTileHeight); // Find the distance, and divide it by the number of steps int changeX = (int)((endOffsetX - startOffsetX) / myPath.size()); int changeY = (int)((endOffsetY - startOffsetY) / myPath.size()); // Convert the map path to pixels over tiles // And add interpolation between the starting and ending offsets auto it = myPath.begin(); int i = 0; while (it != myPath.end()) { // A position that is valid on the start and end tile is not // necessarily valid on all the tiles in between, so check the offsets. *it = checkNodeOffsets(radius, walkMask, it->x * mTileWidth + startOffsetX + changeX * i, it->y * mTileHeight + startOffsetY + changeY * i); ++i; ++it; } // Remove the last path node, as it's more clever to go to the destination. // It also permit to avoid zigzag at the end of the path, // especially with mouse. Position destination = checkNodeOffsets(radius, walkMask, endPixelX, endPixelY); myPath.pop_back(); myPath.push_back(destination); return myPath; } Path Map::findPath(int startX, int startY, int destX, int destY, unsigned char walkmask, int maxCost) { // The basic walking cost of a tile. const int basicCost = 100; // Path to be built up (empty by default) Path path; // Declare open list, a list with open tiles sorted on F cost std::priority_queue openList; // Return when destination not walkable if (!getWalk(destX, destY, walkmask)) return path; // Reset starting tile's G cost to 0 MetaTile *startTile = getMetaTile(startX, startY); startTile->Gcost = 0; // Add the start point to the open list openList.push(Location(startX, startY, startTile)); bool foundPath = false; // Keep trying new open tiles until no more tiles to try or target found while (!openList.empty() && !foundPath) { // Take the location with the lowest F cost from the open list. Location curr = openList.top(); openList.pop(); // If the tile is already on the closed list, this means it has already // been processed with a shorter path to the start point (lower G cost) if (curr.tile->whichList == mOnClosedList) continue; // Put the current tile on the closed list curr.tile->whichList = mOnClosedList; // Check the adjacent tiles for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { // Calculate location of tile to check const int x = curr.x + dx; const int y = curr.y + dy; // Skip if if we're checking the same tile we're leaving from, // or if the new location falls outside of the map boundaries if ((dx == 0 && dy == 0) || !contains(x, y)) continue; MetaTile *newTile = getMetaTile(x, y); // Skip if the tile is on the closed list or is not walkable // unless its the destination tile if (newTile->whichList == mOnClosedList || ((newTile->blockmask & walkmask) && !(x == destX && y == destY))) { continue; } // When taking a diagonal step, verify that we can skip the // corner. if (dx != 0 && dy != 0) { MetaTile *t1 = getMetaTile(curr.x, curr.y + dy); MetaTile *t2 = getMetaTile(curr.x + dx, curr.y); if ((t1->blockmask | t2->blockmask) & walkmask) continue; } // Calculate G cost for this route, ~sqrt(2) for moving diagonal int Gcost = curr.tile->Gcost + (dx == 0 || dy == 0 ? basicCost : basicCost * 362 / 256); /* Demote an arbitrary direction to speed pathfinding by adding a defect (TODO: change depending on the desired visual effect, e.g. a cross-product defect toward destination). Important: as long as the total defect along any path is less than the basicCost, the pathfinder will still find one of the shortest paths! */ if (dx == 0 || dy == 0) { // Demote horizontal and vertical directions, so that two // consecutive directions cannot have the same Fcost. ++Gcost; } // It costs extra to walk through a being (needs to be enough // to make it more attractive to walk around). // N.B.: Specific to TmwAthena for now. if (Net::getNetworkType() == ServerInfo::TMWATHENA && occupied(x, y)) { Gcost += 3 * basicCost; } // Skip if Gcost becomes too much // Warning: probably not entirely accurate if (Gcost > maxCost * basicCost) { continue; } if (newTile->whichList != mOnOpenList) { // Found a new tile (not on open nor on closed list) /* Update Hcost of the new tile. The pathfinder does not work reliably if the heuristic cost is higher than the real cost. In particular, using Manhattan distance is forbidden here. */ int dx = std::abs(x - destX), dy = std::abs(y - destY); newTile->Hcost = std::abs(dx - dy) * basicCost + std::min(dx, dy) * (basicCost * 362 / 256); // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Update Gcost and Fcost of new tile newTile->Gcost = Gcost; newTile->Fcost = Gcost + newTile->Hcost; if (x != destX || y != destY) { // Add this tile to the open list newTile->whichList = mOnOpenList; openList.push(Location(x, y, newTile)); } else { // Target location was found foundPath = true; } } else if (Gcost < newTile->Gcost) { // Found a shorter route. // Update Gcost and Fcost of the new tile newTile->Gcost = Gcost; newTile->Fcost = Gcost + newTile->Hcost; // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Add this tile to the open list (it's already // there, but this instance has a lower F score) openList.push(Location(x, y, newTile)); } } } } // Two new values to indicate whether a tile is on the open or closed list, // this way we don't have to clear all the values between each pathfinding. if (mOnOpenList > UINT_MAX - 2) { // We reset the list memebers value. mOnClosedList = 1; mOnOpenList = 2; // Clean up the metaTiles const int size = mWidth * mHeight; for (int i = 0; i < size; ++i) mMetaTiles[i].whichList = 0; } else { mOnClosedList += 2; mOnOpenList += 2; } // If a path has been found, iterate backwards using the parent locations // to extract it. if (foundPath) { int pathX = destX; int pathY = destY; while (pathX != startX || pathY != startY) { // Add the new path node to the start of the path list path.push_front(Position(pathX, pathY)); // Find out the next parent MetaTile *tile = getMetaTile(pathX, pathY); pathX = tile->parentX; pathY = tile->parentY; } } return path; } void Map::addParticleEffect(const std::string &effectFile, int x, int y, int w, int h) { ParticleEffectData newEffect; newEffect.file = effectFile; newEffect.x = x; newEffect.y = y; newEffect.w = w; newEffect.h = h; particleEffects.push_back(newEffect); } void Map::initializeParticleEffects(Particle *particleEngine) { Particle *p; if (config.getBoolValue("particleeffects")) { for (auto i = particleEffects.begin(); i != particleEffects.end(); i++ ) { p = particleEngine->addEffect(i->file, i->x, i->y); if (p && i->w > 0 && i->h > 0) { p->adjustEmitterSize(i->w, i->h); } } } } TileAnimation *Map::getAnimationForGid(int gid) const { auto i = mTileAnimations.find(gid); return (i == mTileAnimations.end()) ? NULL : i->second; } void Map::setMask(int mask) { mMask = mask; }